• Title/Summary/Keyword: T regulatory cell

Search Result 298, Processing Time 0.027 seconds

Evaluation of Insulin Like Growth Facror-1 Genetic Polymorphism with Gastric Cancer Susceptibility and Clinicopathological Features

  • Farahani, Roya Kishani;Azimzadeh, Pedram;Rostami, Elham;Malekpour, Habib;Aghdae, Hamid Asadzadeh;Pourhoseingholi, Mohamad Amin;Mojarad, Ehsan Nazemalhosseini;Zali, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4215-4218
    • /
    • 2015
  • Gastric cancer (GC) is one of the most common malignancies in the world. It is the first cause of cancer deaths in both sexes In Iranian population. Circulating insulin-like growth factor-one (IGF-1) levels have been associated for gastric cancer. IGF-1 protein has central roles involved in the regulation of epithelial cell growth, proliferation, transformation, apoptosis and metastasis. Single nucleotide polymorphism in IGF-1 regulatory elements may lead to alter in IGF-1expression level and GC susceptibility. The aim of this study was to investigate the influence of IGF-1 gene polymorphism (rs5742612) on risk of GC and clinicopathological features for the first time in Iranian population. In total, 241 subjects including 100 patients with GC and 141 healthy controls were recruited in our study. Genotypes were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with DNA from peripheral blood. The polymorphism was statistically analyzed to investigate the relationship with the risk of GC and clinicopathological properties. Logistic regression analysis revealed that there was no significant association between rs5742612 and the risk of GC. In addition, no significant association between genotypes and clinicopathological features was observed (p value>0.05). The frequencies of the CC, CT, and TT genotypes were 97%, 3%, and 0%, respectively, among the cases, and 97.9%, 2.1%, and 0%, respectively, among the controls. CC genotype was more frequent in cases and controls. The frequencies of C and T alleles were 98.9% and 1.1% in controls and 98.5% and 1.5% in patient respectively. Our results provide the first evidence that this variant is rare in Iranian population and it may not be a powerful genetic predisposing biomarker for prediction GC clinicopathological features in an Iranian population.

Molecular Events of Insulin Action Occur at Lipid Raft/Caveolae in Adipocytes (지방세포의 Lipid Raft/Caveolae에서 인슐린의 분자적 작용기전)

  • Bae, Sun-Sik;Yun, Sung-Ji;Kim, Eun-Kyung;Kim, Chi-Dae;Choi, Jang-Hyun;Suh, Pann-Ghill
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.56-63
    • /
    • 2007
  • Insulin stimulates the fusion of intracellular vesicles containing glucose transporter 4 (GLUT4) with plasma membrane in adipocytes and muscle cells. Here we show that adipocyte differentiation results in enhanced insulin sensitivity of glucose uptake. On the other hand, glucose uptake in response to platelet-derived growth factor (PDGF) stimulation was markedly reduced by adipocyte differentiation. Expression level of insulin receptor and caveolin-1 was dramatically increased during adipocyte differentiation. Adipocyte differentiation caused :ilightly enhanced activation of acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) by insulin stimulation. However, activation of Akt by PDGF stimulation was largely reduced. Activation of ERK was not detected in both fibroblasts and adipocytes after stimulation with insulin. PDGF-dependent activation of ERK was reduced by adipocyte differentiation. Insulin-dependent glucose uptake was abrogated by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, in both fibroblasts and adipocytes. Also disassembly of caveolae structure by $methyl-\beta-cyclodextrin$ caused impairment of Akt activation and glucose uptake. Finally, insulin receptor, Akt, SH2-domain-containing inositol 5-phosphatase 2 (SHIP2), and regulatory subunit of PI3K are localized at lipid raft domain and the translocation was facilitated upon insulin stimulation. Given these results, we suggest that lipid raft provide proper site for insulin action for glucose uptake.

Nuclear Transfer using Human CD59 and IL-18BP Double Transgenic Fetal Fibroblasts in Miniature Pigs

  • Ryu, Junghyun;Kim, Minjeong;Ahn, Jin Seop;Ahn, Kwang Sung;Shim, Hosup
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Xenotransplantation involves multiple steps of immune rejection. The present study was designed to produce nuclear transfer embryos, prior to the production of transgenic pigs, using fibroblasts carrying transgenes human complement regulatory protein hCD59 and interleukin-18 binding protein (hIL-18BP) to reduce hyperacute rejection (HAR) and cellular rejection in pig-to-human xenotransplantation. In addition to the hCD59-mediated reduction of HAR, hIL-18BP may prevent cellular rejection by inhibiting the activation of natural killer cells, activated T-cell proliferation, and induction of $IFN-{\gamma}$. Transgene construct including hCD59 and ILI-18BP was introduced into miniature pig fetal fibroblasts. After antibiotic selection of double transgenic fibroblasts, integration of the transgene was screened by PCR, and the transgene expression was confirmed by RT-PCR. Treatment of human serum did not affect the survival of double-transgenic fibroblasts, whereas the treatment significantly reduced the survival of non-transgenic fibroblasts (p<0.01), suggesting alleviation of HAR. Among 337 reconstituted oocytes produced by nuclear transfer using the double transgenic fibroblasts, 28 (15.3%) developed to the blastocyst stage. Analysis of individual embryos indicated that 53.6% (15/28) of embryos contained the transgene. The result of the present study demonstrates the resistance of hCD59 and IL-18BP double-transgenic fibroblasts against HAR, and the usefulness of the transgenic approach may be predicted by RT-PCR and cytolytic assessment prior to actual production of transgenic pigs. Further study on the transfer of these embryos to surrogates may produce transgenic clone miniature pigs expressing hCD59 and hIL-18BP for xenotransplantation.

Identification of genes involved in inbreeding depression of reproduction in Langshan chickens

  • Xue, Qian;Li, Guohui;Cao, Yuxia;Yin, Jianmei;Zhu, Yunfen;Zhang, Huiyong;Zhou, Chenghao;Shen, Haiyu;Dou, Xinhong;Su, Yijun;Wang, Kehua;Zou, Jianmin;Han, Wei
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.975-984
    • /
    • 2021
  • Objective: Inbreeding depression of reproduction is a major concern in the conservation of native chicken genetic resources. Here, based on the successful development of strongly inbred (Sinb) and weakly inbred (Winb) Langshan chickens, we aimed to evaluate inbreeding effects on reproductive traits and identify candidate genes involved in inbreeding depression of reproduction in Langshan chickens. Methods: A two-sample t-test was performed to estimate the differences in phenotypic values of reproductive traits between Sinb and Winb chicken groups. Three healthy chickens with reproductive trait values around the group mean values were selected from each of the groups. Differences in ovarian and hypothalamus transcriptomes between the two groups of chickens were analyzed by RNA sequencing (RNA-Seq). Results: The Sinb chicken group showed an obvious inbreeding depression in reproduction, especially for traits of age at the first egg and egg number at 300 days (p<0.01). Furthermore, 68 and 618 differentially expressed genes (DEGs) were obtained in the hypothalamus and ovary between the two chicken groups, respectively. In the hypothalamus, DEGs were mainly enriched in the pathways related to vitamin metabolism, signal transduction and development of the reproductive system, such as the riboflavin metabolism, Wnt signaling pathway, extracellular matrix-receptor interaction and focal adhesion pathways, including stimulated by retinoic acid 6, serpin family F member 1, secreted frizzled related protein 2, Wnt family member 6, and frizzled class receptor 4 genes. In the ovary, DEGs were significantly enriched in pathways associated with basic metabolism, including amino acid metabolism, oxidative phosphorylation, and glycosaminoglycan degradation. A series of key DEGs involved in folate biosynthesis (gamma-glutamyl hydrolase, guanosine triphosphate cyclohydrolase 1), oocyte meiosis and ovarian function (cytoplasmic polyadenylation element binding protein 1, structural maintenance of chromosomes 1B, and speedy/RINGO cell cycle regulator family member A), spermatogenesis and male fertility (prostaglandin D2 synthase 21 kDa), Mov10 RISC complex RNA helicase like 1, and deuterosome assembly protein 1) were identified, and these may play important roles in inbreeding depression in reproduction. Conclusion: The results improve our understanding of the regulatory mechanisms underlying inbreeding depression in chicken reproduction and provide a theoretical basis for the conservation of species resources.

Facilitation of cisplatin-induced acute kidney injury by high salt intake through increased inflammatory response (염분 섭취에 의한 시스플라틴 유도 급성 신장 손상의 촉진과 염증 반응과의 연관성)

  • Ji, Seon Yeong;Hwangbo, Hyun;Kim, Min Yeong;Kim, Da Hye;Park, Beom Su;Park, Joung-Hyun;Lee, Bae-Jin;Lee, Hyesook;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.86-93
    • /
    • 2021
  • A high salt diet contributes to kidney damage by causing hypoxia and oxidative stress. Recently, an increase in dietary salt has been reported to induce an inflammatory phenotype in immune cells, further contributing to kidney damage. However, studies on the exact mechanism and role of a high salt diet on the inflammatory response in the kidneys are still insufficient. In this study, a cisplatin-induced acute kidney injury model using C57BL/6 mice was used to analyze the effect of salt intake on kidney injury. Results showed that high salt administration aggravated kidney edema in mice induced by treatment with cisplatin. Moreover, the indicators of kidney and liver function impairment were significantly increased in the group cotreated with high salt compared with that treated with cisplatin alone. Furthermore, the exacerbation of kidney damage by high salt administration was also associated with a decrease in the number of cells in the immune regulatory system. Additionally, high salt administration further decreased renal perfusion functions along with increased cisplatin-induced damage to proximal tubules. This was accompanied by increased expression of T cell immunoglobulin, mucin domain 1 (a biomarker of kidney injury), and Bax (a pro-apoptotic factor). Moreover, cisplatin-induced expression of proinflammatory mediators and cytokines, including cyclooxygenase-2 and tumor necrosis factor-α in kidney tissue, was further increased by high salt intake. Therefore, these results indicate that the kidney's inflammatory response by high salt treatment can further promote kidney damage caused by various pathological factors.

Change of Dendritic Cell Subsets Involved in Protection Against Listeria monocytogenes Infection in Short-Term-Fasted Mice

  • Young-Jun Ju;Kyung-Min Lee;Girak Kim;Yoon-Chul Kye;Han Wool Kim;Hyuk Chu;Byung-Chul Park;Jae-Ho Cho;Pahn-Shick Chang;Seung Hyun Han;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • v.22 no.2
    • /
    • pp.16.1-16.20
    • /
    • 2022
  • The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b- DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b- DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103+CD11b- DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103- may induce the increase of IFN-γ-producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic.

Fatty acid analysis and regulatory effects of citron (Citrus junos Sieb. ex TANAKA) seed oil on nitric oxide production, lipid accumulation, and leptin secretion (유자씨유의 지방산분석 및 Nitric Oxide 생성, 지방축적능, 렙틴분비 조절효과)

  • Kim, Tae Woo;Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.4
    • /
    • pp.221-228
    • /
    • 2014
  • Purpose: Citron seed oil (CSO) has been reported to have high antioxidant activity. However, the composition and other biologically activities of CSO have not been reported. In this study, we confirmed the fatty acid composition of CSO, which may be beneficial to vascular disease and obesity. Methods: We investigated the oil composition of CSO using gas chromatography coupled with mass spectrometry (GC-MS) analysis, and cytotoxicity was confirmed by Cell Counting Kit-8 (CCK-8) assay. Nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) was measured using Griess reagent, and lipid accumulation and leptin secretion in 3T3-L1 cells were measured by Oil-Red O staining and commercial ELISA kit, respectively. Results: GC-MS analysis indicated that CSO contains several components, including linoleic acid, oleic acid, palmitic acid, stearic acid, linolenic acid, palmitoleic acid, and arachidic acid. In physiological activity analysis, CSO did not induce cytotoxic effects in HUVECs and 3T3-L1 cells. Further, CSO significantly induced nitric oxide and leptin secretion as well as inhibited lipid accumulation. Conclusion: CSO increased NO release, inhibited lipid accumulation, and induced leptin secretion, suggesting it may be useful for the management of vessels and weight gain. Although further studies are required to investigate the safety and mechanism of action of CSO, our results show that the composition and physiological activity of CSO are sufficient for its use as functional edible oil.

Discovery of UBE2I as a Novel Binding Protein of a Premature Ovarian Failure-Related Protein, FOXL2 (조기 난소 부전증 유발 관련 단백질인 FOXL2의 새로운 결합 단백질 UBE2I의 발견)

  • Park, Mira;Jung, Hyun Sook;Kim, Hyun-Lee;Pisarska, Margareta D.;Ha, Hye-Jeong;Lee, Kangseok;Bae, Jeehyeon;Ko, Jeong-Jae
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.289-296
    • /
    • 2008
  • BPES (Blepharophimosis/Ptosis/Epicanthus inversus Syndrome) is an autosomal dominant disorder caused by mutations in FOXL2. Affected individuals have premature ovarian failure (POF) in addition to small palpebral fissures, drooping eyelids, and broad nasal bridge. FOXL2 is a member of the forkhead family transcription factors. In FOXL2-deficient ovaries, granulosa cell differentiation dose not progress, leading to arrest of folliculogenesis and oocytes atresia. Using yeast two-hybrid screening of rat ovarian cDNA library with FOXL2 as bait, we found that small ubiquitin-related modifier (SUMO)-conjugating E2 enzyme UBE2I protein interacted with FOXL2 protein. UBE2I also known as UBC9 is an essential protein for processing SUMO modification. Sumoylation is a form of post-translational modification involved in diverse signaling pathways including the regulation of transcriptional activities of many transcriptional factors. In the present study, we confirmed the protein-protein interaction between FOXL2 and UBE2I in human cells, 293T, by in vivo immunoprecipitation. In addition, we generated truncated FOXL2 mutants and identified the region of FOXL2 required for its association with UBE2I using yeast-two hybrid system. Therefore, the identification of UBE2I as an interacting protein of FOXL2 further suggests a presence of novel regulatory mechanism of FOXL2 by sumoylation.

  • PDF