• Title/Summary/Keyword: T/C 계획

Search Result 146, Processing Time 0.029 seconds

Optimization of Supercritical Water Oxidation(SCWO) Process for Decomposing Nitromethane (Nitromethane 분해를 위한 초임계수 산화(SCWO) 공정 최적화)

  • Han, Joo Hee;Jeong, Chang Mo;Do, Seung Hoe;Han, Kee Do;Sin, Yeong Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.659-668
    • /
    • 2006
  • The optimization of supercritical water oxidation (SCWO) process for decomposing nitromethane was studied by means of a design of experiments. The optimum operating region for the SCWO process to minimize COD and T-N of treated water was obtained in a lab scale unit. The authors had compared the results from a SCWO pilot plant with those from a lab scale system to explore the problems of scale-up of SCWO process. The COD and T-N in treated waters were selected as key process output variables (KPOV) for optimization, and the reaction temperature (Temp) and the mole ratio of nitromethane to ammonium hydroxide (NAR) were selected as key process input variables (KPIV) through the preliminary tests. The central composite design as a statistical design of experiments was applied to the optimization, and the experimental results were analyzed by means of the response surface method. From the main effects analysis, it was declared that COD of treated water steeply decreased with increasing Temp but slightly decreased with an increase in NAR, and T-N decreased with increasing both Temp and NAR. At lower Temp as $420{\sim}430^{\circ}C$, the T-N steeply decreased with an increase in NAR, however its variation was negligible at higher Temp above $450^{\circ}C$. The regression equations for COD and T-N were obtained as quadratic models with coded Temp and NAR, and they were confirmed with coefficient of determination ($r^2$) and normality of standardized residuals. The optimum operating region was defined as Temp $450-460^{\circ}C$ and NAR 1.03-1.08 by the intersection area of COD < 2 mg/L and T-N < 40 mg/L with regression equations and considering corrosion prevention. To confirm the optimization results and investigate the scale-up problems of SCWO process, the nitromethane was decomposed in a pilot plant. The experimental results from a SCWO pilot plant were compared with regression equations of COD and T-N, respectively. The results of COD and T-N from a pilot plant could be predicted well with regression equations which were derived in a lab scale SCWO system, although the errors of pilot plant data were larger than lab ones. The predictabilities were confirmed by the parity plots and the normality analyses of standardized residuals.

Power and Heat Load of IT Equipment Projections for New Data Center's HVAC System Design (데이터센터의 공조시스템 계획을 위한 IT장비의 전력 및 발열량 예측에 대한 연구)

  • Cho, Jin-Kyun;Shin, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.212-217
    • /
    • 2012
  • The cooling of data centers has emerged as a significant challenge as the density of IT equipment increased. With the rapid increasing of heat load and cooling system, predictions for electronics power trends have been closely watched. A data center power density projection is needed so that IT organizations can develop data centers with adequate cooling for reasonable lifetimes. This paper will discuss the need for something more than processor and equipment power trend projections which have overestimated the required infrastructure for customers. This projection will use data from a survey of actual enterprise data centers and the ASHRAE projections to formulate a data center server heat load trend projection.

Optimization of Inner Nitriding Process for Cr-Mo-V Steel of Small Arms Barrel by using Taguchi Experimental Design Method (다구찌 실험계획법을 이용한 소구경화기 총열 내부용 Cr-Mo-V강의 질화공정 최적화)

  • Kwon, Hyuk-Rin;Kim, Dong-Eun;Son, Hyung-Dong;Shin, Jea-Won;Park, Jae-Ha;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.148-154
    • /
    • 2018
  • When shooting small arms, the inner surface temperature is heated up to about $700{\sim}1,000^{\circ}C$ by the friction of the bullet and the inner wall of the barrel and the combustion of propellant. High-temperature propellant gas and high-speed movement of the bullet cause corrosion of the inner wall, which is noticeable immediately in front of the chamber. In this study, the mechanical properties of Cr-Mo-V steel, which is the base material, were tested using Taguchi experimental design to find the best nitriding treatment conditions. For the nitriding process, the working time, salt bath temperature, and salt concentration were combined as three conditions and placed in the $L_9(3^4)$, orthogonal array table. The thicknesses of the white layer and the nitrogen diffusion layer were measured after nitriding under each condition in a salt bath furnace. Durability was evaluated by measuring the degree of dispersion through actual shooting because it was difficult to evaluate the mechanical properties of the cylinder inner structure. As a result, it was confirmed that the durability was optimal at $565^{\circ}C$, 1 hour, 0.5%. These optimal conditions were selected by the statistical analysis of the Minitab program(ver.17).

Evaluation of Mazars damage model of KURT granite under simulated coupled environment of geological disposal (처분 복합환경을 고려한 KURT 화강암의 Mazars 손상모델 평가)

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.419-434
    • /
    • 2020
  • In this study, the damage parameters of Mazars model for KURT (KAERI Underground Research Tunnel) granite are measured form uniaxial compressive and Brazilian tests under the simulated coupled condition of a deep geological disposal. The tests are conducted in three different temperatures (15℃, 45℃, and 75℃) and dry/saturated conditions. Major model parameters such as maximum effective tensile strain (𝜖d0), At, Bt, Ac, and Bc differ from the typical reference values of concrete specimens. This is likely due to the difference in elastic modulus between rock and concrete. It is found that the saturation of specimens causes an increase in value of Bt and Bc while, the rise in temperature increases 𝜖d0 and Bt and decreases Bc. The damage model obtained from this study will be used as the primary input parameters in the development of coupled Thermo-Hydro-Mechanical Damage numerical model in KAERI.

A Study on the Effect of the Urban Regeneration Project on the Reduction of Carbon Emission - A Case Study of Jeonju Test-Bed - (도시재생사업 적용에 따른 탄소저감 효과 - 전주TB지역을 대상으로 -)

  • Park, Kiyong;Lee, Sangeun;Park, Heekyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • This study mainly focuses on urban regeneration project as a countermeasure to resolve climate change issues by analyzing the carbon-reduction effect of Jeonju test-bed cases. First, an urban regeneration project is designed for city, Jeonju by analyzing its environmental problems and potential improvement. Then, carbon emission and reduction amounts are evaluated for different businesses and scenarios. Carbon emission sources are classified according to a standard suggested by IPCC, and the emissions are calculated by various standard methods. The result shows that carbon emission amount in Jeonju test-bed is 102,149 tCO2eq. The fact that 70% of the emission from energy sector originates from buildings implies that urban regeneration projects can concentrate on building portions to effectively reduce carbon emission. It is also projected carbon emission will decrease by 3,826tCo2eq in 2020 compared to 2011, reduction mainly based on overall population and industry shrinkage. When urban regeneration projects are applied to 5 urban sectors (urban environment, land use, green transportation, low carbon energy, and green buildings) total of 10,628tCO2eq is reduced and 4,857tCO2 (=15.47%) when only applied to the green building sector. Moreover, different carbon reduction scenarios are set up to meet each goal of different sectors. The result shows that scenario A, B, and C each has 5%, 11%, and 15% of carbon reduction, respectively. It is recommended to apply scenario B to achieve 11% reduction goal in a long term. Therefore, this research can be a valuable guideline for planning future urban regeneration projects and relative policies by analyzing the present urban issues and suggesting improvement directions.

Construction Lean Process Development and Application for Field Productivity Improvement (건설 현장 생산성 향상을 위한 Lean 프로세스 개발과 적용에 대한 연구)

  • Kim, Yong-pyo;Jeong, Yong-ho;Lee, Min-jae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.2
    • /
    • pp.88-97
    • /
    • 2020
  • Practical and efficient application of lean construction, which has been proposed as an alternative to the limitations of traditional construction management methods, was developed to facilitate application on site and improve productivity through the fusion of traditional construction management methods. The concepts of Lean Time and Lean Cycle Time, which are the principles of lean construction, were introduced to eliminate waste and smooth flow production and pursuit of perfection, and the goal of establishing and improving the criteria for measurement and improvement was established and the information collection template was configured and applied to ensure reliability of measurement and analysis. Based on this, the project feasibility, reliability, and continuous improvement process were applied to the Field case to verify its effectiveness.

Comparison of Startup Companies' Survival Rate between Urban and Rural Areas (도시와 농촌지역 신규사업체의 생존율변화 비교분석)

  • Lee, Jemyung
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.4
    • /
    • pp.147-157
    • /
    • 2016
  • On the purpose to analyze the survival rate of startup companies since their establishment, the companies' survival rate was investigated by surviving period. The average and coefficient of variation(C.V.) of the startup companies' survival rate were examined with the comparison of urban and rural areas, and primary, secondary, and tertiary industries. In this study, the variation of total numbers of new-established companies, from 1998 to 2012, were analyzed with micro-data of the Statistics Korea, 'The Census on Establishments'. The results show that the survival rate of primary industry companies largely fluctuate and don't be stabled during the whole surviving periods, whereas secondary and tertiary industry companies show stabilized survival rate after fifth year from their establishment. Especially, the startup companies of primary industry located at urban areas show the largest fluctuation and the most vulnerable stability of survival rate. It is concluded that the surviving period of primary industry companies don't guarantee their survival, while survival rate of secondary and tertiary industry company became stable after five years from their establishment.

Study on the Decision of the Optimal Spare Part Level Based on the Cost in Telecommunication System (통신 시스템의 비용 최적 Spare Part 수준 결정)

  • Yang, C.R.;Lee, K.O.;Kim, J.T.
    • Electronics and Telecommunications Trends
    • /
    • v.9 no.1
    • /
    • pp.25-36
    • /
    • 1994
  • 통신 시스템의 확실한 연속 서비스 목표를 만족시키기 위한 최적의 spare part 수준을 결정하는 데에는 고장률과 spare part의 인도기간이 크게 기여한다. 따라서 본고는 관련 비용인자와 함께 통신시스템의 최적 spare part 수준결정모델의 결정에 관해 중점을 두고 서술하였다. 이 모델은 통신시스템을 구성하는 plug-in PBA의 spare 수준을 결정하는데 유용하게 적용될 것이며 또한 연도별 시설 공급계획에 의거 운용보전국(OMC) 단위로 적용할 때 특히 유용할 것이다.

Filtering Rate with Effect of Water Temperature and Size of Two Farming Ascidians Styela clava and S. plicata, and a Farming Mussel Mytilus edulis (수온과 개체크기에 따른 양식산 미더덕, 흰멍게, 진주담치의 여수율)

  • KIM Yong Sool;Moon Tae Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.272-277
    • /
    • 1998
  • Filtering rates of two farming ascidians Styela clava and S. plicata, and of a farming mussel Mytilus edulis were experimentally investigated with reference to effects of water temperature and size. Absorptiometric determinations of filtering rates were carried out in a closed system with experimental animals being decreased indicate dyes neutral red. Optical density (OD) of 440 nm in path length 22 mm cell used as the indication of food particles absorption was appeared directly in proportion with the concentration of neutral red dyes. The filtering rate F is calculated by Kim's equation $F\;=\;V(1-e^{-z})$, where V is the water volume ($\ell$) in the experimental jar, and Z is the decreasing coefficient of OD as meaning of instantaneous removal speed as In $C_t\;=\;In\;C_{o}-Z{\cdot}t$, in this formula $C_t$ is OD at the time t. Filtering rate of S. clava increased as exponential function with increasing temperature while not over critical limit, and the critical temperature for filtering rate was assumed to be between $28^{\circ}C$ and $29^{\circ}C$. In case of S. plicata, the critical temperature was to be below $13^{\circ}C$, and through the temperature range $15\~25^{\circ}C$ appeared a little difference in level even though with significant. M. edulis was not appear any significant effects by water temperature less than $29^{\circ}C$. The model formula derived from the results is as below, where F is filtering rate (${\ell}/hr/animal$), T is water temperature ($^{\circ}C$), and DW is dry meat weight (g) of experimental animal. $$S.\;Clava;\;F\;=\;e xp\;(0.119\;T-4.540)\;(DW)^{0.6745},\;T<29^{\circ}C$$) $$S.\;plicata;\;F\;=\;e xp\;(A_t)\;(DW)^{0.5675},\;(13^{\circ}C $$[A_t =-8.56+0.6805\;T-0.0153\;T^2]$$ $$M.\;edulis;\;F\;=\;0.3844\;(DW)^{0.4952},\;<29^{\circ}C$$)

  • PDF