• Title/Summary/Keyword: Systems Performance

Search Result 25,977, Processing Time 0.06 seconds

Design and Fabrication of WLAN / UWB Antenna for Marine High Speed Communication Network System (해양 초고속 통신망 시스템을 위한 WLAN(Wireless Local Area Network) / UWB(Ultra Wide Band)용 안테나 설계 및 제작)

  • Hong, Yong-Pyo;Kang, Sung-Woon;Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.489-495
    • /
    • 2018
  • In this paper, we designed and fabricated WLAN / UWB communication antennas operating at 3.3 [GHz] and 5 [GHz] bands in order to effectively use the high-speed communication network system that improved antenna miniaturization, gain and radiation pattern. Microstrip patch antennas were chosen to improve the bandwidth. The slot width, length, and transmission line width were calculated using the theoretical formula for each step. Simulation results show that the return loss is -14.053 [dB] at 3.3 [GHz] and -13.118 [dB] at 5 [GHz]. The gain showed a value of 2.479 [dBi] at 3.3 [GHz] and a value of 3.317 [dBi] at 5 [GHz]. After optimizing it with the CST Microwave Studio 2014 program, which can be 3D-designed, Based on these results, we investigated the performance of antennas by measuring their characteristics. In recent years, WLAN, which is a variety of wireless technologies that are continuously developing, and UWB, which is a communication technology which is increasing in frequency band due to an increase in demand of the technology users, is used for a high speed wireless communication system. Communication seems to be possible.

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data (스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Jang, Dong-Hyuk;Park, Yun-Hui
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

A Proposal on the Consulting Model for Efficient Construction of Material Handling Automation System : Focused on K Company's Case (물류자동화 시스템의 효율적 구축을 위한 컨설팅 방법론 제안 : K기업의 사례를 중심으로)

  • Ko, J.H.;Cho, J.H.;Oh, H.S.;Shim, S.C.;Ryu, J.H.;Lee, S.J.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.202-211
    • /
    • 2015
  • Companies build the factory automation system to improve management effectiveness and productivity as prime strategies for sustainable growth. But most companies undergo various trials and errors while carrying out the project without elaborate preparation stage for factory automation. In this study, we tried to verify what factors are critical to effectively building distribution automation system, which is a branch of factory automation system. A consulting model for setting up a Material Handling Automation System by utilizing the Stage-Gate Process, which is product development process was studied. 29 material handling automation projects carried out between the year 1990 to 2013 at K-Company were selected. Interviews with the project managers, operators and maintenance personnels, various records and current status of the projects were used as data for structural equations based on the Milan consulting model and existing researches of factory automation, CIM for material handling automation. Creating effective basis of production, material handling system and energy saving system with expert review, when preparing a material handling automation project, help promote the project planning thus contributing to the performance of the resulting system, which appears though rather weakly in our data. Also the effect of material handling automation can be enhanced through sufficient and effective links to the relevant environments such as production logistics management and automated warehouses. More detailed planning characteristics of project promotion or some time-series data of effective Material Handling Automation System could enhace furthur studies. We propose a consulting model for setting up an efficient material handling automation system.

The Development of the Lens of the Optical System for High Concentration Solar PV System (고집광 태양광 발전을 위한 광학시스템 렌즈 개발)

  • Ryu, Kwang-Sun;Cha, Won-Ho;Shin, Goo-Hwan;Cho, Hee-Keun;Kim, Young-Sik;Kang, Seong-Won;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.82-88
    • /
    • 2011
  • The artificial increase in the solar intensity incident on solar cells using lenses or mirrors can allow solar cells to generate equivalent power with a lower cost. There are two types of concentration optics for solar energy conversion. One is to use mirrors, and the other is to use Fresnel lenses. The gains that can be achieved with a Fresnel lens or a parabolic mirror are compared. The result showed the gains are comparable and the two configurations were developed competitively. In application areas of Fresnel lenses as solar concentrators, several variations of design were devised and tested. Some PV systems still use commercially available flat Fresnel lenses as concentrators. A convex linear Fresnel lens to improve the concentration ratio and the efficiency is devised and flat linear Fresnel lens in thermal energy collection is utilized. In this study, we designed and optimized flat Fresnel lens and the 'light pipe' to develop 500X concentrated solar PV system. In the process, we compare the transmission efficiencies according to groove types. We performed rigorous ray tracing simulation of the flat Fresnel lenses. The computer aided simulation showed the 'grooves in case' has the better efficiency than that of 'grooves out case'. Based on the ray-trace results we designed and manufactured sample Fresnel lenses. The optical performance were measured and compared with ray-trace results. Finally, the optical efficiency was measured to be above 75%. All the design and manufacturing were performed based on that InGaP/InGaAs/Ge triple junction solar cell is used to convert the photon energy to electrical power. Field test will be made and analyzed in the near future.

Applicability Estimation of Ballast Non-exchange-type Quick-hardening Track Using a Layer Separation Pouring Method (층 분리주입을 이용한 도상자갈 무교환방식 급속경화궤도의 적용성 평가)

  • Lee, Il Wha;Jung, Young Ho;Lee, Min Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.543-551
    • /
    • 2015
  • Quick-hardening track (QHT) is a construction method which is used to change from old ballast track to concrete track. Sufficient time for construction is important, as the construction should be done during operational breaks at night. Most of the time is spent on exchanging the ballast layer. If it is possible to apply the ballast non-exchange type of quick-hardening track, it would be more effective to reduce the construction time and costs. In this paper, pouring materials with high permeability are suggested and a construction method involving a layer separation pouring process considering the void condition is introduced in order to develop ballast non-exchange type of QHT. The separate pouring method can secure the required strength because optimized materials are poured into the upper layer and the lower layer for each void ratio condition. To ensure this process, a rheology analysis was conducted on the design of the pouring materials according to aggregate size, the aggregate distribution, the void ratio, the void size, the tortuosity and the permeability. A polymer series was used as the pouring material of the lower layer to secure the void filling capacity and for adhesion to the fine-grained layer. In addition, magnesium-phosphate ceramic (MPC) was used as the pouring material of the upper layer to secure the void-filling capacity and for adhesion of the coarse-grained layer. As a result of a mechanics test of the materials, satisfactory performance corresponding to existing quick-hardening track was noted.

Performance Verification of WAVE Communication Technology for Railway Application (차량용 무선통신기술(WAVE)의 철도 적용을 위한 성능검증)

  • Kim, Keum-Bee;Ryu, Sang-Hwan;Choi, Kyu-Hyoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.456-467
    • /
    • 2016
  • Wireless Access in Vehicular Environments (WAVE) communication technology, which provides vehicleto-vehicle and vehicle-to-infrastructure communication and offers safe and convenient service, has been developed for application to an Intelligent Transport System (ITS). This paper provides field test results on a study of the feasibility of WAVE technology application to railway communication systems. A test railway communication system based on WAVE technology has been built along the Daebul line and a newly developed EMU. Field tests have been carried out according to the communication function requirements for LTE - R. The test results show that the railway communication system based on WAVE technology meets the functional requirements: maximum transmission length is 730m, maximum transfer delay is 5.69ms, and maximum interruption time is 1.36s; other tests including throughput test, video data transmission test, VoIP data test, and channel switching test also produced results that meets the functional requirements. These results suggest that WAVE technology can be applied to the railway communication system, enabling Vehicle-to-Wayside communication.

Multi-Hop Vehicular Cloud Construction and Resource Allocation in VANETs (VANET 망에서 다중 홉 클라우드 형성 및 리소스 할당)

  • Choi, Hyunseok;Nam, Youngju;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.11
    • /
    • pp.263-270
    • /
    • 2019
  • Vehicular cloud computing is a new emerging technology that can provide drivers with cloud services to enable various vehicular applications. A vehicular cloud is defined as a set of vehicles that share their own resources. Vehicles should collaborate with each other to construct vehicular clouds through vehicle-to-vehicle communications. Since collaborating vehicles to construct the vehicular cloud have different speeds, directions and locations respectively, the vehicular cloud is constructed in multi-hop communication range. Due to intermittent wireless connectivity and low density of vehicles with the limited resources, the construction of vehicular cloud with multi-hop communications has become challenging in vehicular environments in terms of the service success ratio, the service delay, and the transmitted packet number. Thus, we propose a multi-hop vehicular cloud construction protocol that increases the service success ratio and decreases the service delay and the transmitted packet number. The proposed protocol uses a connection time-based intermediate vehicle selection scheme to reduce the cloud failure probability of multi-hop vehicular cloud. Simulation results conducted in various environments verify that the proposed protocol achieves better performance than the existing protocol.

A Survey of Weather Forecasting Software and Installation of Low Resolution of the GloSea6 Software (기상예측시스템 소프트웨어 조사 및 GloSea6 소프트웨어 저해상도 설치방법 구현)

  • Chung, Sung-Wook;Lee, Chang-Hyun;Jeong, Dong-Min;Yeom, Gi-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.349-361
    • /
    • 2021
  • With the development of technology and the advancement of weather forecasting models and prediction methods, higher performance weather forecasting software has been developed, and more precise and accurate weather forecasting is possible by performing software using supercomputers. In this paper, the weather forecast model used by six major countries is investigated and its characteristics are analyzed, and the Korea Meteorological Administration currently uses it in collaboration with the UK Meteorological Administration since 2012 and explains the GloSea However, the existing GloSea was conducted only on the Meteorological Administration supercomputer, making it difficult for various researchers to perform detailed research by specialized field. Therefore, this paper aims to establish a standard experimental environment in which the low-resolution version based on GloSea6 currently used in Korea can be used in local systems and test it to present the localization of low-resolution GloSea6 that can be performed in the laboratory environment. In other words, in this paper, the local portability of low-resolution Globe6 is verified by establishing a basic architecture consisting of a user terminal-calculation server-repository server and performing execution tests of the software.

Selective Nitrate Removal Performance Analysis of Ion Exchange Resin in Shipboard Waste Washwater by Air Pollution Prevention Facility (선박용 대기오염장치 폐세정수 내 질산염의 선택적 제거를 위한 이온교환수지 공정 성능 평가)

  • Kim, Bong-Chul;Yeo, In-Seol;Park, Chan-Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.399-404
    • /
    • 2021
  • From 1 January 2020, the limit for Sulphur in fuel oil used on board ships operating outside designated emission control areas will be reduced to 0.5 %. This regulation by international maritime organization (IMO) is able to significantly reduce the amount of Sulphur oxides (SOx) discharging from ships and should have environmental advantages and health for all over the world. To meet the regulation, in these days, wet scrubber system is being actively developed. However, this process leads to make washing wastewater. In this study, we evaluated ion exchange resin system in accordance with scrubber wastewater discharge regulation by IMO. Theoretical wastewater used as feed solution of lab scale water treatment systems. The results revealed that nitrate ion was removed selectively in spite of high TDS wash wastewater solution depending on ion exchange resin property. Moreover, it was possible to improve efficiency of the system by optimizing operating conditions.

Fall detection based on acceleration sensor attached to wrist using feature data in frequency space (주파수 공간상의 특징 데이터를 활용한 손목에 부착된 가속도 센서 기반의 낙상 감지)

  • Roh, Jeong Hyun;Kim, Jin Heon
    • Smart Media Journal
    • /
    • v.10 no.3
    • /
    • pp.31-38
    • /
    • 2021
  • It is hard to predict when and where a fall accident will happen. Also, if rapid follow-up measures on it are not performed, a fall accident leads to a threat of life, so studies that can automatically detect a fall accident have become necessary. Among automatic fall-accident detection techniques, a fall detection scheme using an IMU (inertial measurement unit) sensor attached to a wrist is difficult to detect a fall accident due to its movement, but it is recognized as a technique that is easy to wear and has excellent accessibility. To overcome the difficulty in obtaining fall data, this study proposes an algorithm that efficiently learns less data through machine learning such as KNN (k-nearest neighbors) and SVM (support vector machine). In addition, to improve the performance of these mathematical classifiers, this study utilized feature data aquired in the frequency space. The proposed algorithm analyzed the effect by diversifying the parameters of the model and the parameters of the frequency feature extractor through experiments using standard datasets. The proposed algorithm could adequately cope with a realistic problem that fall data are difficult to obtain. Because it is lighter than other classifiers, this algorithm was also easy to implement in small embedded systems where SIMD (single instruction multiple data) processing devices were difficult to mount.