• Title/Summary/Keyword: Systems Design

Search Result 21,958, Processing Time 0.042 seconds

Design of Unknown Input Observer for Linear Time-delay Systems

  • Fu, Yan-Ming;Duan, Guang-Ren;Song, Shen-Min
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.530-535
    • /
    • 2004
  • This paper deals with the unknown input observer (UIO) design problem for a class of linear time-delay systems. A case in which the observer error can completely be decoupled from an unknown input is treated. Necessary and sufficient conditions for the existences of such observers are present. Based on Lyapunov stability theory, thedesign of the observer with internal delay is formulated in terms of linear matrix inequalities (LMI). The design of the observer without internal delay is turned into a stabilization problem in linear systems. Two design algorithms of UIO are proposed. The effect of the proposed approach is illustrated by two numerical examples.

On the Improvement of the Design Verification Process for the Development of Railway Systems with Systems Safety Considered (철도시스템 개발에서 시스템 안전성을 고려한 설계검증 프로세스의 개선에 관한 연구)

  • Sim, Sang-Hyun;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.51-60
    • /
    • 2013
  • As the human demand or desire on brand new systems otherwise equipped with new functions grows drastically, so does the complexity of the systems. With this trend, the systems are becoming bigger in scale and at the same time the safety requirements are more stringent in the development. Typical systems examples in such a situation may include high-speed railway systems, aero and space systems, marine systems, etc. Failure of those systems can cause serious damages on both the human being and wealth with social infrastructure. As such, it is quite necessary to ensure that the safety requirements be satisfied in the system development. To achieve this need, there could be a lot of solutions to take. In this paper, regarding safety, a special attention is given to the verification phase process, which is one of the intermediate phases of whole systems development process. More specifically, the ultimate concern is placed on how to carry out the design verification while ensuring the safety requirements. To do so, some improvements in the verification phase were proposed first. Then, the outcomes were combined with the systems safety process by generating an integrated process model to reach the goal. As a case study, application to a railway system was discussed, where strict safety requirements are usually necessary. It would be expected that the potential likelihood of failure with rail systems could be reduced if the results obtained are used effectively with some enhancement from further study.

Decentralized Neural Network-based Excitation Control of Large-scale Power Systems

  • Liu, Wenxin;Sarangapani, Jagannathan;Venayagamoorthy, Ganesh K.;Liu, Li;Wunsch II, Donald C.;Crow, Mariesa L.;Cartes, David A.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.526-538
    • /
    • 2007
  • This paper presents a neural network based decentralized excitation controller design for large-scale power systems. The proposed controller design considers not only the dynamics of generators but also the algebraic constraints of the power flow equations. The control signals are calculated using only local signals. The transient stability and the coordination of the subsystem control activities are guaranteed through rigorous stability analysis. Neural networks in the controller design are used to approximate the unknown/imprecise dynamics of the local power system and the interconnections. All signals in the closed loop system are guaranteed to be uniformly ultimately bounded. To evaluate its performance, the proposed controller design is compared with conventional controllers optimized using particle swarm optimization. Simulations with a three-machine power system under different disturbances demonstrate the effectiveness of the proposed controller design.

A Study on Conceptual Design of Smart Training System for Advanced Plant Design and FEED Engineers Based on Exploring Systems Engineering (시스템엔지니어링 탐색적 접근을 통한 플랜트 엔지니어링 선행설계 전문인력 양성을 위한 스마트 교육시스템 개념설계에 관한 연구)

  • Hong, Dae Geun;Park, Chang Woo;Suh, Suk Hwan;Sur, Hwal Won
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • Front End Engineering Design (FEED), currently dominated by a few advanced countries, creates the highest added-value in the in plant construction industry. In the domestic plant engineering industry, it is difficult to acquire its own technology capability and experience due to lack of experience and shortage of experts in advanced design fields such as basic design and FEED. To achieve competitiveness with the advanced countries, it is necessary to establish smart training system for advanced plant design and FEED engineers. This study aims to design an integrated training framework for plant engineering and FEED using system engineering to build a smart plant engineering education system that learns design knowledge based on educational content and experience based on design stage for chemical plant.

A study on the manufacturing systems design methodology (생산시스템의 설계 방법론에 관한 고찰)

  • 강무진;이기성;문홍일;김동주;장인성;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.555-560
    • /
    • 2002
  • This paper addresses the methodologies for manufacturing systems design. While a number of design methods are used in product or part design, methods for manufacturing systems design are rarely known. Two approaches, simulation and axiomatic design theory, are discussed with respective case examples. The usual purpose of using simulation is to identify the bottleneck of a manufacturing system or to evaluate its performance with the aim of configuring the manufacturing system. The simulation typically proceeds in steps such as problem definition, model building, numerical experimentation, analysis and evaluation. The axiomatic design method transforms customer attributes into functional requirements and repeats mapping processes between functional domain and physical one until a satisfactory level of refinement of the functional requirements and the design parameters is reached. Possible design alternatives are evaluated by applying the independence axiom as well as the information axiom.

  • PDF

Development of Durability Estimation and Design Systems of Worm Gears (웜기어의 강도평가 및 설계시스템 개발에 관한 연구)

  • 정태형;백재협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.207-216
    • /
    • 1997
  • We developed the durability estimation and design systems to minimize the volume, considering the durability, efficiency, and design requirements of worm gears. That is, we consider each kind of factors affecting on durability on the basis of AGMA Standard for the cylindrical and double-enveloping worm gears. We also estimate input power on the basis of wear and durability, bending strength and deflection of worm shaft, and we developed the durability estimation and design systems of power transmission worm gears introducing the optimal design method on the personal computer to be easily used in field. Also, we developed a method which converts the design variables obtained from the optimal design method to integer values(number of worm threads, number of worm threads, number of worm wheel teeth, etc.,) to be used in real design and production. The developed durability estimation and design method can be easily applied to the design of worm gears used as power transmission devices in machineries and is expected to be used for weight minimization of worm gear unit.

  • PDF

On the Development of Modularized Structures for Safety-Critical Systems by Analyzing Components Failure (시스템 구성품의 위험 심각도를 반영한 안전중시 시스템의 설계 모듈화에 관한 연구)

  • Kim, Young Min;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.11-19
    • /
    • 2014
  • Modern systems development becomes more and more complicated due to the need on the ever-increasing capability of the systems. In addition to the complexity issue, safety concern is also increasing since the malfunctions of the systems under development may result in the accidents in both the test and evaluation phase and the operation phase. Those accidents can cause disastrous damages if explosiveness gets involved therein such as in weapon systems development. The subject of this paper is on how to incorporate safety requirements in the design of safety-critical systems. As an approach, a useful system structure using the method of design structure matrix (DSM) is studied while reflecting the need on systems safety. Specifically, the effects of system components failure are analyzed and numerically modeled first. Also, the system components are identified and their interfaces are represented using a component DSM. Combining the results of the failure analysis and the component DSM leads to a modified DSM. By rearranging the resultant DSM, a modular structure is derived with safety requirements incorporated. As a case study, application of the approach is also discussed in the development of a military UAV plane.

Application of Systems Engineering for Improving the Design Process of Public Halls (공공 홀의 설계 프로세스 향상을 위한 시스템 엔지니어링 적용)

  • Yoshihara, Saki;Toma, Tetsuya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.115-124
    • /
    • 2015
  • The major challenge of designing public halls or performing arts centers in Japan is meeting the expectations of the regional community; greater stakeholder involvement is required in order to solve this problem. The purpose of this paper is to examine whether stakeholders can become more involved in public hall design by using systems engineering (SE), which has never before been applied when designing public halls. As such, this study redesigned an actual public hall (Iwaki Alios) using an SE approach. The results revealed that applying SE was effective in the creation of a public hall concept.

Stochastic Optimal Control and Network Co-Design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.515-525
    • /
    • 2007
  • In this paper, we develop a co-design methodology of stochastic optimal controllers and network parameters that optimizes the overall quality of control (QoC) in networked control systems (NCSs). A new dynamic model for NCSs is provided. The relationship between the system stability and performance and the sampling frequency is investigated, and the analysis of co-design of control and network parameters is presented to determine the working range of the sampling frequency in an NCS. This optimal sampling frequency range is derived based on the system dynamics and the network characteristics such as data rate, time-delay upper bound, data-packet size, and device processing time. With the optimal sampling frequency, stochastic optimal controllers are designed to improve the overall QoC in an NCS. This co-design methodology is a useful rule of thumb to choose the network and control parameters for NCS implementation. The feasibility and effectiveness of this co-design methodology is verified experimentally by our NCS test bed, a ball magnetic-levitation (maglev) system.

Application of CDM to MIMO Systems: Control of Hot Rolling Mill

  • Kim, Young-Chol;Hur, Myung-Jun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.250-256
    • /
    • 2001
  • This paper deals with a design problem of a decentralized controller with a strongly connected two-input two-output multivariable system. To this end, we present a classical design approach which consists of two main steps: one is to decompose the multivariable plant into two single-input single-output systems by means of the Individual Channel Design (ICD) concept, the other is to design controller of each channel by the Coefficient Diagram Method (CDM) so that it satisfies, especially, time domain specifications such as settling time, overshoot etc.. A design procedure was proposed and then was applied to a 2$\times$2 hot rolling mill plant. Simulation results showed that the proposed method has excellent control performances.

  • PDF