• 제목/요약/키워드: Systems

Search Result 114,354, Processing Time 0.118 seconds

The Role of Home Economics Education in the Fourth Industrial Revolution (4차 산업혁명시대 가정과교육의 역할)

  • Lee, Eun-hee
    • Journal of Korean Home Economics Education Association
    • /
    • v.31 no.4
    • /
    • pp.149-161
    • /
    • 2019
  • At present, we are at the point of change of the 4th industrial revolution era due to the development of artificial intelligence(AI) and rapid technological innovation that no one can predict until now. This study started from the question of 'What role should home economics education play in the era of the Fourth Industrial Revolution?'. The Fourth Industrial Revolution is characterized by AI, cloud computing, Internet of Things(IoT), big data, and Online to Offline(O2O). It will drastically change the social system, science and technology and the structure of the profession. Since the dehumanization of robots and artificial intelligence may occur, the 4th Industrial Revolution Education should be sought to foster future human resources with humanity and citizenship for the future community. In addition, the implication of education in the fourth industrial revolution, which will bring about a change to a super-intelligent and hyper-connected society, is that the role of education should be emphasized so that humans internalize their values as human beings. Character education should be established as a generalized and internalized consciousness with a concept established in the integration of the curriculum, and concrete practical strategies should be prepared. In conclusion, home economics education in the 4th industrial revolution era should play a leading role in the central role of character education, and intrinsic improvement of various human lives. The fourth industrial revolution will change not only what we do, or human mental and physical activities, but also who we are, or human identity. In the information society and digital society, it is important how quickly and accurately it is possible to acquire scattered knowledge. In the information society, it is required to learn how to use knowledge for human beings in rapid change. As such, the fourth industrial revolution seeks to lead the family, organization, and community positively by influencing the systems that shape our lives. Home economics education should take the lead in this role.

A User Profile-based Filtering Method for Information Search in Smart TV Environment (스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법)

  • Sean, Visal;Oh, Kyeong-Jin;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.97-117
    • /
    • 2012
  • Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.

An Empirical Study on the Effect of CRM System on the Performance of Pharmaceutical Companies (고객관계관리 시스템의 수준이 BSC 관점에서의 기업성과에 미치는 영향 : 제약회사를 중심으로)

  • Kim, Hyun-Jung;Park, Jong-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.43-65
    • /
    • 2010
  • Facing a complex environment driven by a decade, many companies are adopting new strategic frameworks such as Customer Relationship Management system to achieve sustainable profitability as well as overcome serious competition for survival. In many business areas, CRM system advanced a great deal in a matter of continuous compensating the defect and overall integration. However, pharmaceutical companies in Korea were slow to accept them for usesince they still have a tendency of holding fast to traditional way of sales and marketing based on individual networks of sales representatives. In the circumstance, this article tried to empirically address current status of CRM system as well as the effects of the system on the performance of pharmaceutical companies by applying BSC method's four perspectives, from financial, customer, learning and growth and internal process. Survey by e-mail and post to employers and employees who were working in pharma firms were undergone for the purpose. Total 113 cases among collected 140 ones were used for the statistical analysis by SPSS ver. 15 package. Reliability, Factor analysis, regression were done. This study revealed that CRM system had a significant effect on improving financial and non-financial performance of pharmaceutical companies as expected. Proposed regression model fits well and among them, CRM marketing information system shed the light on substantial impact on companies' outcome given profitability, growth and investment. Useful analytical information by CRM marketing information system appears to enable pharmaceutical firms to set up effective marketing and sales strategies, these result in favorable financial performance by enhancing values for stakeholderseventually, not to mention short-term profit and/or mid-term potential to growth. CRM system depicted its influence on not only financial performance, but also non-financial fruit of pharmaceutical companies. Further analysis for each component showed that CRM marketing information system were able to demonstrate statistically significant effect on the performance like the result of financial outcome. CRM system is believed to provide the companies with efficient way of customers managing by valuable standardized business process prompt coping with specific customers' needs. It consequently induces customer satisfaction and retentionto improve performance for long period. That is, there is a virtuous circle for creating value as the cornerstone for sustainable growth. However, the research failed to put forward to evidence to support hypothesis regarding favorable influence of CRM sales representative's records assessment system and CRM customer analysis system on the management performance. The analysis is regarded to reflect the lack of understanding of sales people and respondents between actual work duties and far-sighted goal in strategic analysis framework. Ordinary salesmen seem to dedicate short-term goal for the purpose of meeting sales target, receiving incentive bonus in a manner-of-fact style, as such, they tend to avail themselves of personal network and sales and promotional expense rather than CRM system. The study finding proposed a link between CRM information system and performance. It empirically indicated that pharmaceutical companies had been implementing CRM system as an effective strategic business framework in order for more balanced achievements based on the grounded understanding of both CRM system and integrated performance. It suggests a positive impact of supportive CRM system on firm performance, especially for pharmaceutical industry through the initial empirical evidence. Also, it brings out unmet needs for more practical system design, improvement of employees' awareness, increase of system utilization in the field. On the basis of the insight from this exploratory study, confirmatory research by more appropriate measurement tool and increased sample size should be further examined.

Design and Analysis of Online Advertising Expenditure Model based on Coupon Download (쿠폰 다운로드를 기준으로 하는 온라인 광고비 모델의 설계 및 분석)

  • Jun, Jung-Ho;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.1-19
    • /
    • 2010
  • In offline environment, unlike traditional advertising model through TV, newspaper, and radio, online advertising model draws instantaneous responses from potential consumers and it is convenient to assess. This kind of characteristics of Internet advertising model has driven the growth of advertising model among various Internet business models. There are, conventionally classified, CPM (Cost Per Mile), CPC (Cost Per Click), and CPS (Cost Per Sales) models as Internet advertising expenditure model. These can be examined in manners regarding risks that stakeholders should stand and degree of responsibility. CPM model that is based on number of advertisement exposure is mechanically exposed to users but not actually recognized by users resulting in risk of wasted expenditure by advertisers without any advertising effect. While on aspect of media, CPS model that is based on conversion action is the most risky model because of the conversion action such as product purchase is determined by capability of advertisers not that of media. In this regard, while there are issue of CPM and CPS models disadvantageously affecting only one side of Internet advertising business model value network, CPC model has been evaluated as reasonable both to advertisers and media, and occupied the largest segment of Internet advertising market. However, CPC model also can cause fraudulent behavior such as click fraud because of the competition or dishonest amount of advertising expenditure. On the user aspect, unintentionally accessed advertisements can lead to more inappropriate expenditure from advertisers. In this paper, we suggest "CPCD"(Cost Per Coupon Download) model. This goes beyond simple clicking of advertisements and advertising expenditure is exerted when users download a coupon from advertisers, which is a concept in between CPC and CPS models. To achieve the purpose, we describe the scenario of advertiser perspective, processes, participants and their benefits of CPCD model. Especially, we suggest the new value in online coupon; "possibility of storage" and "complement for delivery to the target group". We also analyze the working condition for advertiser by a comparison of CPC and CPCD models through advertising expenditure simulation. The result of simulation implies that the CPCD model suits more properly to advertisers with medium-low price products rather than that of high priced goods. This denotes that since most of advertisers in CPC model are dealing with medium-low priced products, the result is very interesting. At last, we contemplate applicability of CPCD model in ubiquitous environment.

Self-Tour Service Technology based on a Smartphone (스마트 폰 기반 Self-Tour 서비스 기술 연구)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.147-157
    • /
    • 2010
  • With the immergence of the iPhone, the interest in Smartphones is getting higher as services can be provided directly between service providers and consumers without the network operators. As the number of international tourists increase, individual tourists are also increasing. According to the WTO's (World Tourism Organization) prediction, the number of international tourists will be 1.56 billion in 2020,and the average growth rate will be 4.1% a year. Chinese tourists, in particular, are increasing rapidly and about 100 million will travel the world in 2020. In 2009, about 7.8 million foreign tourists visited Korea and the Ministry of Culture, Sports and Tourism is trying to attract 12 million foreign tourists in 2014. A research institute carried out a survey targeting foreign tourists and the survey results showed that they felt uncomfortable with communication (about 55.8%) and directional signs (about 21.4%) when they traveled in Korea. To solve this inconvenience for foreign tourists, multilingual servicesfor traffic signs, tour information, shopping information and so forth should be enhanced. The appearance of the Smartphone comes just in time to provide a new service to address these inconveniences. Smartphones are especially useful because every Smartphone has GPS (Global Positioning System) that can provide users' location to the system, making it possible to provide location-based services. For improvement of tourists' convenience, Seoul Metropolitan Government hasinitiated the u-tour service using Kiosks and Smartphones, and several Province Governments have started the u-tourpia project using RFID (Radio Frequency IDentification) and an exclusive device. Even though the u-tour or u-tourpia service used the Smartphone and RFID, the tourist should know the location of the Kiosks and have previous information. So, this service did not give the solution yet. In this paper, I developed a new convenient service which can provide location based information for the individual tourists using GPS, WiFi, and 3G. The service was tested at Insa-dong in Seoul, and the service can provide tour information around the tourist using a push service without user selection. This self-tour service is designed for providing a travel guide service for foreign travelers from the airport to their destination and information about tourist attractions. The system reduced information traffic by constraining receipt of information to tourist themes and locations within a 20m or 40m radius of the device. In this case, service providers can provide targeted, just-in-time services to special customers by sending desired information. For evaluating the implemented system, the contents of 40 gift shops and traditional restaurants in Insa-dong are stored in the CMS (Content Management System). The service program shows a map displaying the current location of the tourist and displays a circle which shows the range to get the tourist information. If there is information for the tourist within range, the information viewer is activated. If there is only a single resultto display, the information viewer pops up directly, and if there are several results, the viewer shows a list of the contents and the user can choose content manually. As aresult, the proposed system can provide location-based tourist information to tourists without previous knowledge of the area. Currently, the GPS has a margin of error (about 10~20m) and this leads the location and information errors. However, because our Government is planning to provide DGPS (Differential GPS) information by DMB (Digital Multimedia Broadcasting) this error will be reduced to within 1m.

The Prediction of Purchase Amount of Customers Using Support Vector Regression with Separated Learning Method (Support Vector Regression에서 분리학습을 이용한 고객의 구매액 예측모형)

  • Hong, Tae-Ho;Kim, Eun-Mi
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.213-225
    • /
    • 2010
  • Data mining has empowered the managers who are charge of the tasks in their company to present personalized and differentiated marketing programs to their customers with the rapid growth of information technology. Most studies on customer' response have focused on predicting whether they would respond or not for their marketing promotion as marketing managers have been eager to identify who would respond to their marketing promotion. So many studies utilizing data mining have tried to resolve the binary decision problems such as bankruptcy prediction, network intrusion detection, and fraud detection in credit card usages. The prediction of customer's response has been studied with similar methods mentioned above because the prediction of customer's response is a kind of dichotomous decision problem. In addition, a number of competitive data mining techniques such as neural networks, SVM(support vector machine), decision trees, logit, and genetic algorithms have been applied to the prediction of customer's response for marketing promotion. The marketing managers also have tried to classify their customers with quantitative measures such as recency, frequency, and monetary acquired from their transaction database. The measures mean that their customers came to purchase in recent or old days, how frequent in a period, and how much they spent once. Using segmented customers we proposed an approach that could enable to differentiate customers in the same rating among the segmented customers. Our approach employed support vector regression to forecast the purchase amount of customers for each customer rating. Our study used the sample that included 41,924 customers extracted from DMEF04 Data Set, who purchased at least once in the last two years. We classified customers from first rating to fifth rating based on the purchase amount after giving a marketing promotion. Here, we divided customers into first rating who has a large amount of purchase and fifth rating who are non-respondents for the promotion. Our proposed model forecasted the purchase amount of the customers in the same rating and the marketing managers could make a differentiated and personalized marketing program for each customer even though they were belong to the same rating. In addition, we proposed more efficient learning method by separating the learning samples. We employed two learning methods to compare the performance of proposed learning method with general learning method for SVRs. LMW (Learning Method using Whole data for purchasing customers) is a general learning method for forecasting the purchase amount of customers. And we proposed a method, LMS (Learning Method using Separated data for classification purchasing customers), that makes four different SVR models for each class of customers. To evaluate the performance of models, we calculated MAE (Mean Absolute Error) and MAPE (Mean Absolute Percent Error) for each model to predict the purchase amount of customers. In LMW, the overall performance was 0.670 MAPE and the best performance showed 0.327 MAPE. Generally, the performances of the proposed LMS model were analyzed as more superior compared to the performance of the LMW model. In LMS, we found that the best performance was 0.275 MAPE. The performance of LMS was higher than LMW in each class of customers. After comparing the performance of our proposed method LMS to LMW, our proposed model had more significant performance for forecasting the purchase amount of customers in each class. In addition, our approach will be useful for marketing managers when they need to customers for their promotion. Even if customers were belonging to same class, marketing managers could offer customers a differentiated and personalized marketing promotion.

A Study on Forecasting Accuracy Improvement of Case Based Reasoning Approach Using Fuzzy Relation (퍼지 관계를 활용한 사례기반추론 예측 정확성 향상에 관한 연구)

  • Lee, In-Ho;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.67-84
    • /
    • 2010
  • In terms of business, forecasting is a work of what is expected to happen in the future to make managerial decisions and plans. Therefore, the accurate forecasting is very important for major managerial decision making and is the basis for making various strategies of business. But it is very difficult to make an unbiased and consistent estimate because of uncertainty and complexity in the future business environment. That is why we should use scientific forecasting model to support business decision making, and make an effort to minimize the model's forecasting error which is difference between observation and estimator. Nevertheless, minimizing the error is not an easy task. Case-based reasoning is a problem solving method that utilizes the past similar case to solve the current problem. To build the successful case-based reasoning models, retrieving the case not only the most similar case but also the most relevant case is very important. To retrieve the similar and relevant case from past cases, the measurement of similarities between cases is an important key factor. Especially, if the cases contain symbolic data, it is more difficult to measure the distances. The purpose of this study is to improve the forecasting accuracy of case-based reasoning approach using fuzzy relation and composition. Especially, two methods are adopted to measure the similarity between cases containing symbolic data. One is to deduct the similarity matrix following binary logic(the judgment of sameness between two symbolic data), the other is to deduct the similarity matrix following fuzzy relation and composition. This study is conducted in the following order; data gathering and preprocessing, model building and analysis, validation analysis, conclusion. First, in the progress of data gathering and preprocessing we collect data set including categorical dependent variables. Also, the data set gathered is cross-section data and independent variables of the data set include several qualitative variables expressed symbolic data. The research data consists of many financial ratios and the corresponding bond ratings of Korean companies. The ratings we employ in this study cover all bonds rated by one of the bond rating agencies in Korea. Our total sample includes 1,816 companies whose commercial papers have been rated in the period 1997~2000. Credit grades are defined as outputs and classified into 5 rating categories(A1, A2, A3, B, C) according to credit levels. Second, in the progress of model building and analysis we deduct the similarity matrix following binary logic and fuzzy composition to measure the similarity between cases containing symbolic data. In this process, the used types of fuzzy composition are max-min, max-product, max-average. And then, the analysis is carried out by case-based reasoning approach with the deducted similarity matrix. Third, in the progress of validation analysis we verify the validation of model through McNemar test based on hit ratio. Finally, we draw a conclusion from the study. As a result, the similarity measuring method using fuzzy relation and composition shows good forecasting performance compared to the similarity measuring method using binary logic for similarity measurement between two symbolic data. But the results of the analysis are not statistically significant in forecasting performance among the types of fuzzy composition. The contributions of this study are as follows. We propose another methodology that fuzzy relation and fuzzy composition could be applied for the similarity measurement between two symbolic data. That is the most important factor to build case-based reasoning model.

Analysis of Knowledge Community for Knowledge Creation and Use (지식 생성 및 활용을 위한 지식 커뮤니티 효과 분석)

  • Huh, Jun-Hyuk;Lee, Jung-Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.85-97
    • /
    • 2010
  • Internet communities are a typical space for knowledge creation and use on the Internet as people discuss their common interests within the internet communities. When we define 'Knowledge Communities' as internet communities that are related to knowledge creation and use, they are categorized into 4 different types such as 'Search Engine,' 'Open Communities,' 'Specialty Communities,' and 'Activity Communities.' Each type of knowledge community does not remain the same, for example. Rather, it changes with time and is also affected by the external business environment. Therefore, it is critical to develop processes for practical use of such changeable knowledge communities. Yet there is little research regarding a strategic framework for knowledge communities as a source of knowledge creation and use. The purposes of this study are (1) to find factors that can affect knowledge creation and use for each type of knowledge community and (2) to develop a strategic framework for practical use of the knowledge communities. Based on previous research, we found 7 factors that have considerable impacts on knowledge creation and use. They were 'Fitness,' 'Reliability,' 'Systemicity,' 'Richness,' 'Similarity,' 'Feedback,' and 'Understanding.' We created 30 different questions from each type of knowledge community. The questions included common sense, IT, business and hobbies, and were uniformly selected from various knowledge communities. Instead of using survey, we used these questions to ask users of the 4 representative web sites such as Google from Search Engine, NAVER Knowledge iN from Open Communities, SLRClub from Specialty Communities, and Wikipedia from Activity Communities. These 4 representative web sites were selected based on popularity (i.e., the 4 most popular sites in Korea). They were also among the 4 most frequently mentioned sitesin previous research. The answers of the 30 knowledge questions were collected and evaluated by the 11 IT experts who have been working for IT companies more than 3 years. When evaluating, the 11 experts used the above 7 knowledge factors as criteria. Using a stepwise linear regression for the evaluation of the 7 knowledge factors, we found that each factors affects differently knowledge creation and use for each type of knowledge community. The results of the stepwise linear regression analysis showed the relationship between 'Understanding' and other knowledge factors. The relationship was different regarding the type of knowledge community. The results indicated that 'Understanding' was significantly related to 'Reliability' at 'Search Engine type', to 'Fitness' at 'Open Community type', to 'Reliability' and 'Similarity' at 'Specialty Community type', and to 'Richness' and 'Similarity' at 'Activity Community type'. A strategic framework was created from the results of this study and such framework can be useful for knowledge communities that are not stable with time. For the success of knowledge community, the results of this study suggest that it is essential to ensure there are factors that can influence knowledge communities. It is also vital to reinforce each factor has its unique influence on related knowledge community. Thus, these changeable knowledge communities should be transformed into an adequate type with proper business strategies and objectives. They also should be progressed into a type that covers varioustypes of knowledge communities. For example, DCInside started from a small specialty community focusing on digital camera hardware and camerawork and then was transformed to an open community focusing on social issues through well-known photo galleries. NAVER started from a typical search engine and now covers an open community and a special community through additional web services such as NAVER knowledge iN, NAVER Cafe, and NAVER Blog. NAVER is currently competing withan activity community such as Wikipedia through the NAVER encyclopedia that provides similar services with NAVER encyclopedia's users as Wikipedia does. Finally, the results of this study provide meaningfully practical guidance for practitioners in that which type of knowledge community is most appropriate to the fluctuated business environment as knowledge community itself evolves with time.

Optimal Selection of Classifier Ensemble Using Genetic Algorithms (유전자 알고리즘을 이용한 분류자 앙상블의 최적 선택)

  • Kim, Myung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.99-112
    • /
    • 2010
  • Ensemble learning is a method for improving the performance of classification and prediction algorithms. It is a method for finding a highly accurateclassifier on the training set by constructing and combining an ensemble of weak classifiers, each of which needs only to be moderately accurate on the training set. Ensemble learning has received considerable attention from machine learning and artificial intelligence fields because of its remarkable performance improvement and flexible integration with the traditional learning algorithms such as decision tree (DT), neural networks (NN), and SVM, etc. In those researches, all of DT ensemble studies have demonstrated impressive improvements in the generalization behavior of DT, while NN and SVM ensemble studies have not shown remarkable performance as shown in DT ensembles. Recently, several works have reported that the performance of ensemble can be degraded where multiple classifiers of an ensemble are highly correlated with, and thereby result in multicollinearity problem, which leads to performance degradation of the ensemble. They have also proposed the differentiated learning strategies to cope with performance degradation problem. Hansen and Salamon (1990) insisted that it is necessary and sufficient for the performance enhancement of an ensemble that the ensemble should contain diverse classifiers. Breiman (1996) explored that ensemble learning can increase the performance of unstable learning algorithms, but does not show remarkable performance improvement on stable learning algorithms. Unstable learning algorithms such as decision tree learners are sensitive to the change of the training data, and thus small changes in the training data can yield large changes in the generated classifiers. Therefore, ensemble with unstable learning algorithms can guarantee some diversity among the classifiers. To the contrary, stable learning algorithms such as NN and SVM generate similar classifiers in spite of small changes of the training data, and thus the correlation among the resulting classifiers is very high. This high correlation results in multicollinearity problem, which leads to performance degradation of the ensemble. Kim,s work (2009) showedthe performance comparison in bankruptcy prediction on Korea firms using tradition prediction algorithms such as NN, DT, and SVM. It reports that stable learning algorithms such as NN and SVM have higher predictability than the unstable DT. Meanwhile, with respect to their ensemble learning, DT ensemble shows the more improved performance than NN and SVM ensemble. Further analysis with variance inflation factor (VIF) analysis empirically proves that performance degradation of ensemble is due to multicollinearity problem. It also proposes that optimization of ensemble is needed to cope with such a problem. This paper proposes a hybrid system for coverage optimization of NN ensemble (CO-NN) in order to improve the performance of NN ensemble. Coverage optimization is a technique of choosing a sub-ensemble from an original ensemble to guarantee the diversity of classifiers in coverage optimization process. CO-NN uses GA which has been widely used for various optimization problems to deal with the coverage optimization problem. The GA chromosomes for the coverage optimization are encoded into binary strings, each bit of which indicates individual classifier. The fitness function is defined as maximization of error reduction and a constraint of variance inflation factor (VIF), which is one of the generally used methods to measure multicollinearity, is added to insure the diversity of classifiers by removing high correlation among the classifiers. We use Microsoft Excel and the GAs software package called Evolver. Experiments on company failure prediction have shown that CO-NN is effectively applied in the stable performance enhancement of NNensembles through the choice of classifiers by considering the correlations of the ensemble. The classifiers which have the potential multicollinearity problem are removed by the coverage optimization process of CO-NN and thereby CO-NN has shown higher performance than a single NN classifier and NN ensemble at 1% significance level, and DT ensemble at 5% significance level. However, there remain further research issues. First, decision optimization process to find optimal combination function should be considered in further research. Secondly, various learning strategies to deal with data noise should be introduced in more advanced further researches in the future.

Comparative Analysis of ViSCa Platform-based Mobile Payment Service with other Cases (스마트카드 가상화(ViSCa) 플랫폼 기반 모바일 결제 서비스 제안 및 타 사례와의 비교분석)

  • Lee, June-Yeop;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.163-178
    • /
    • 2014
  • Following research proposes "Virtualization of Smart Cards (ViSCa)" which is a security system that aims to provide a multi-device platform for the deployment of services that require a strong security protocol, both for the access & authentication and execution of its applications and focuses on analyzing Virtualization of Smart Cards (ViSCa) platform-based mobile payment service by comparing with other similar cases. At the present day, the appearance of new ICT, the diffusion of new user devices (such as smartphones, tablet PC, and so on) and the growth of internet penetration rate are creating many world-shaking services yet in the most of these applications' private information has to be shared, which means that security breaches and illegal access to that information are real threats that have to be solved. Also mobile payment service is, one of the innovative services, has same issues which are real threats for users because mobile payment service sometimes requires user identification, an authentication procedure and confidential data sharing. Thus, an extra layer of security is needed in their communication and execution protocols. The Virtualization of Smart Cards (ViSCa), concept is a holistic approach and centralized management for a security system that pursues to provide a ubiquitous multi-device platform for the arrangement of mobile payment services that demand a powerful security protocol, both for the access & authentication and execution of its applications. In this sense, Virtualization of Smart Cards (ViSCa) offers full interoperability and full access from any user device without any loss of security. The concept prevents possible attacks by third parties, guaranteeing the confidentiality of personal data, bank accounts or private financial information. The Virtualization of Smart Cards (ViSCa) concept is split in two different phases: the execution of the user authentication protocol on the user device and the cloud architecture that executes the secure application. Thus, the secure service access is guaranteed at anytime, anywhere and through any device supporting previously required security mechanisms. The security level is improved by using virtualization technology in the cloud. This virtualization technology is used terminal virtualization to virtualize smart card hardware and thrive to manage virtualized smart cards as a whole, through mobile cloud technology in Virtualization of Smart Cards (ViSCa) platform-based mobile payment service. This entire process is referred to as Smart Card as a Service (SCaaS). Virtualization of Smart Cards (ViSCa) platform-based mobile payment service virtualizes smart card, which is used as payment mean, and loads it in to the mobile cloud. Authentication takes place through application and helps log on to mobile cloud and chooses one of virtualized smart card as a payment method. To decide the scope of the research, which is comparing Virtualization of Smart Cards (ViSCa) platform-based mobile payment service with other similar cases, we categorized the prior researches' mobile payment service groups into distinct feature and service type. Both groups store credit card's data in the mobile device and settle the payment process at the offline market. By the location where the electronic financial transaction information (data) is stored, the groups can be categorized into two main service types. First is "App Method" which loads the data in the server connected to the application. Second "Mobile Card Method" stores its data in the Integrated Circuit (IC) chip, which holds financial transaction data, which is inbuilt in the mobile device secure element (SE). Through prior researches on accept factors of mobile payment service and its market environment, we came up with six key factors of comparative analysis which are economic, generality, security, convenience(ease of use), applicability and efficiency. Within the chosen group, we compared and analyzed the selected cases and Virtualization of Smart Cards (ViSCa) platform-based mobile payment service.