• Title/Summary/Keyword: System phase noise

Search Result 746, Processing Time 0.029 seconds

A Study on the Application of SVD to an Inverse Problem in a Cantilever Beam with a Non-minimum Phase (비최소 위상을 갖는 외팔보에서 SVD를 이용한 역변환 문제에 관한 연구)

  • 이상권;노경래;박진호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.431-438
    • /
    • 2001
  • This paper present experimental results of source identification for non-minimum phase system. Generally, a causal linear system may be described by matrix form. The inverse problem is considered as a matrix inversion. Direct inverse method can\`t be applied for a non-minimum phase system, the reason is that the system has ill-conditioning. Therefore, in this study to execute an effective inversion, SVD inverse technique is introduced. In a Non-minimum phase system, its system matrix may be singular or near-singular and has one more very small singular values. These very small singular values have information about a phase of the system and ill-conditioning. Using this property we could solve the ill-conditioned problem of the system and then verified it for the practical system(cantilever beam). The experimental results show that SVD inverse technique works well for non-minimum phase system.

  • PDF

Analysis of Effects of Phase Noise in Radar System (위상잡음이 레이더 시스템에 미치는 영향 분석)

  • Park, Jinsung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.373-381
    • /
    • 2013
  • In this paper, the effects of phase noise on the radar system were analyzed in terms of 3 point of view. The impact(s) on the compressed pulse waveform, the FMICW(Frequency Modulated Interrupted Continuous Wave) radar performance and the receiver sensitivity were investigated. From the investigation, it was indicated that the phase noise over 10 kHz offset frequency makes the side lobe level of compressed pulse worse. Also it was founded that the FMICW radar performance, especially at the noise level of range profile, is related to the phase noise. Finally, the investigation showed that the phase noise at local oscillator affects the receiver sensitivity.

Cross-Correlation Measurements of Phase Noise Induced by Relative Intensity Noise in Photodetectors

  • Cao, Zhewei;Yang, Chun;Zhou, Zhenghua
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.694-697
    • /
    • 2016
  • Up-converted phase noise, which is induced by the low-frequency relative intensity noise (RIN) of a laser through AM-PM conversion within a photodetector (PD), is first measured here by means of a cross-correlation method. Our proposed measurement system can isolate the RIN-induced phase noise from noise contributions of other components, such as amplifiers, modulators, and mixers. In particular, shot noise and thermal noise generated from the PD are also suppressed by this method, so that standalone characteristics of the RIN-induced phase noise can be obtained. Experimental results clearly show the quantitative relationship between the RIN-induced phase noise and the incident optical power of the PD. Our findings indicate that the least RIN-induced phase noise appeared at the saturation point of the PD, which is about -162 dBc/Hz at 10 kHz offset.

Noise Reduction using Passive and Active Noise Control in the Closed Area (수동과 능동방식을 혼용한 폐공간에서 소음감쇠)

  • Cho Byung-Mo
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.16-23
    • /
    • 2001
  • Passive noise reduction is a classical approach to attenuate industrial noise, and an active noise cancellation has several advantages over the passive noise cancellation. The active noise reduction system offers a better low frequency performance with a smaller and lighter system. This paper presents a simple active closed loop control system which consists of an controller for inverting and compensating the phase delay, a microphone for picking up the external noise, and a loudspeaker for radiating the acoustic out of phase signal to reduce the external noise, and external noise can be reduced after compensating the phase difference to be $180^{\circ}$ in the frequency of maximum value in the amplitude response. The noise of the phase delay covered from $50^{\circ}\;to\;310^{\circ}$ tends to be reduced in the active noise control system and it is possible to obtain a noise cancelling of up to approximately 20[dB] at the ears in the enclosurer.

  • PDF

Adaptive inverse feedback control of periodic noise for systems with nonminimum phase cancellation path (비최소위상 상쇄계를 가진 시스템을 위한 주기소음의 적응 역 궤환 제어)

  • Kim, Sun-Min;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.437-442
    • /
    • 2000
  • An alternative inverse feedback structure for adaptive active control of periodic noise is introduced for systems with nonminimum phase cancellation path. To obtain the inverse model of the nonminimum phase cancellation path, the cancellation path model can be factorized into a minimum phase term and a maximum phase term. The maximum phase term containing unstable zeros makes the inverse model unstable. To avoid the instability, we alter the inverse model of the maximum phase system into an anti-causal FIR one. An LMS predictor estimates the future samples of the noise, which are necessary for causality of both anti-causal FIR approximation for the stable inverse of the maximum phase system and time-delay existing in the cancellation path. The proposed method has a faster convergence behavior and a better transient response than the conventional FX-LMS algorithms with the same internal model control structure since a filtered reference signal is not required. We compare the proposed methods with the conventional methods through simulation studies.

  • PDF

Nonequilibrium Phenomena in Globally Coupled Active Rotators with Multiplicative and Additive Noises

  • Kim, Seung-Hwan;Park, Seon-Hee;Ryu, Chang-Su
    • ETRI Journal
    • /
    • v.18 no.3
    • /
    • pp.147-160
    • /
    • 1996
  • We investigate noise-induced phase transitions in globally coupled active rotators with multiplicative and additive noises. In the system there are four phases, stationary one-cluster, stationary two-cluster, moving one-cluster, and moving two-cluster phases. It is shown that multiplicative noise induces a bifurcation from one-cluster phase to two-cluster phase. Pinning force also induces a bifurcation from moving phase to stationary phase suppressing the multiplicative noise effect. Additive noise reduces both effects of multiplicative noise and pinning force urging the system to the stationary one-cluster phase. The frustrated effects of pinning force and additive and multiplicative noises lead to a reentrant transition at intermediate additive noise intensity. Nature of the transition is also discussed.

  • PDF

Phase Noise Spectrum of LNB for PSK Multi-mode satellite transmission signal (PSK 고차모드 위성전송을 위한 저잡음 증폭 주파수 변환기의 위상 잡음 해석)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1180-1186
    • /
    • 2008
  • The LNB phase noise of user terminal for high data rate satellite transmission was analyzed in this paper. The phase noise severely affects the service performance in low data rate transmission as well as multi-mode signal for high data rate. As the satellite link frequency is increased, the effects of phase noise for multi-mode signal is increased. The phase noise of LNB, which is operated in high frequency band, is about equal to the transmission system phase noise and have an major effects on service performance degradation. The available transmission mode was analyzed in presence of phase noise of LNB and analysis method for LNB phase noise spectrum distribution was proposed in multi-mode signal.

A Feedforward Partial Phase Noise Mitigation in the Time-Domain using Cyclic Prefix for CO-OFDM Systems

  • Ha, Youngsun;Chung, Wonzoo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.467-470
    • /
    • 2013
  • We propose a blind feedforward phase noise mitigation method in the time-domain for a coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. By exploiting the redundancy of the cyclic prefix (CP), the proposed scheme acquires the overall phase noise difference information during an OFDM block and attempts to mitigate the phase noise in the time domain using a linear approximation. The proposed algorithm mitigates common phase error (CPE) and inter-carrier-interference (ICI) due to phase noise simultaneously, improving the system performance, especially when decision-directed equalizers are used. The simulation results demonstrate the effectiveness of the proposed feedforward phase noise mitigation approach in time domain.

Phase Noise Evaluation of Multi-mode based-COMS Communication Transponder (다중모드 기반 천리안 위성통신 중계기의 위상잡음 특성 평가)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 2012
  • The COMS, which is a multi-purposed satellite that provide the oceanic measurement data and meterological image data, is operating since 2010. Ka-band satellite communication transponder in COMS gets the MSM function that can provide the required multi-beam and transmits the multi-mode signal with high data rate. The phase noise of COMS communication transponder can be increased because of several local oscillators for MSM function and the utilization of Ka-band frequency. The phase noise affects the performance for the multi-mode and high rate data based- transmission method, it is not possible to recover the transmission data in system with the high system phase noise. In this paper, the phase noise of COMS was measured and the effects of the measured phase noise are analysed and evaluated in the viewpoint of the noise bandwidth of transmission system, Also the transmission performances for multi-mode and high rate data are evaluated in the presence of COMS phase noise.

Performance Analysis of OFDM Communication System with the IQ Imbalance and Phase Noise (IQ Imbalance와 위상 잡음을 고려한 OFDM 통신 시스템의 성능 분석)

  • Kim, Sang-Kyun;Ryu, Heung-Gyoon;Kang, Byung-Su;Lee, Kwang-Chun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.757-765
    • /
    • 2007
  • OFDM system is an excellent high speed transmission method but it is seriously sensitive to the phase noise and IQ imbalance. Therefore, in this paper, we analyze the communication performance of the OFDM communication system with IQ imbalance and phase noise. Phase noise's variance can be calculated by integral calculus of phase noise power spectrum. From simulation results, it can be shown that the BER performances show different change according to the phase noise variance and IQ imbalance amount. When amplitude imbalance is ${\varepsilon}$=0.2; 0.3; 0.4 and phase imbalance is ${\phi}=10^0$, and distribution of phase noise is ${\sigma}^2=0.012$, BER is degraded by 2.88 dB, 3.61 dB, 4.09 dB in $10^{-5}$ in the respect of the SNR penalty.