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ABSTRACT

We investigate noise-induced phase tran-

sitions in globally coupled active rotators

with multiplicative and additive noises. In

the system there are four phases, stationary

one-cluster, stationary two-cluster, mov-

ing one-cluster, and moving two-cluster

phases. It is shown that multiplicative

noise induces a bifurcation from one-

cluster phase to two-cluster phase. Pinning

force also induces a bifurcation from mov-

ing phase to stationary phase suppressing

the multiplicative noise effect. Additive

noise reduces both effects of multiplicative

noise and pinning force urging the system

to the stationary one-cluster phase. The

frustrated effects of pinning force and

additive and multiplicative noises lead to a

reentrant transition at intermediate additive

noise intensity. Nature of the transition is

also discussed.
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I. INTRODUCTION

In sensory processing the linking of sen-

sory inputs across multiple receptive fields is

a fundamental task to identify distinct objects,

segment them from each other, and separate

them from background. This linkage is diffi-

cult to approach within the framework of most

current artificial neural network models be-

cause they use only the levels of activity in in-

dividual neurons to encode information. To

overcome this difficulty the model has been

suggested in which global properties of stimuli

are identified through correlations in the tem-

poral firing patterns of different neurons [1].

Recent experiments provided support to this

concept showing that neurons in the primary

visual cortex of the cat can exhibit oscillatory

responses [2], [3]. The responses are coher-

ent over relatively large distances and are sen-

sitive to global properties of stimuli. The ex-

istence of temporal synchronization over rel-

atively large distances in the cortex suggests

that the processing of information is a coopera-

tive process of neurons with different receptive

fields.

Recently the complex oscillating neural

network model was suggested as a model for

flexible pattern recognition [4], [5]. The model

is based on the self-organization of a spatio-

temporal pattern in an oscillatingnetwork. The

flexibility of pattern recognition is caused from

the flexibility of connections by entrainment

and from the stability of dynamical patterns

for deformation. Although the model shows

the possibility of flexible pattern recognition

by the oscillating neural network, the dyna-

mics of the system is unclear because of its

complexity. A simple model is necessary to

investigate dynamics of oscillating neural net-

works.

Oscillations of neuronal activity in the vi-

sual cortex and their potential role in compu-

tation have been the topic of much recent in-

vestigation. A coupled phase oscillator model

which consists of neurons with oscillatory out-

puts was suggested to understand the tempo-

ral and spatial coherence of the oscillations

[6]. The coupled phase oscillators have been

studied extensively as a model system to un-

derstand dynamics of various systems such as

Josephson-junction arrays [7], chemical reac-

tions [8], charge-density waves [9], [10] and

phased antenna arrays [11]. In the weak cou-

pling limit dynamics of the coupled phase os-

cillators has usually been investigated in the

reduced model with the effective interaction

given by the first Fourier mode [12]-[15]. It

has been claimed, however, that higher Fourier

mode interactions are indispensable for inter-

esting collective dynamics [16], [17]. It has

been also shown that the phase oscillators with

the interaction of higher harmonics eventually

converged to the clustered states at some para-

meter range.

Coupled active rotators have been studied

as a phase model of either coupled limit-cycle

oscillators or coupled excitable elements [18].

Particularly the question on the role of noise

in coupled rotator models has been raised con-
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tinuously. Transitions induced by multiplica-

tive noise in low dimensional dynamical sys-

tems are by now a familiar phenomena [19],

but multiplicative noise in spatially distributed

and/or high dimensional systems remains the

focus of current research [20]. The glob-

ally coupled active rotators with additive noise

show the transition from moving (excited)

state to stationary (inhibited) state at a critical

noise intensity. Recently, we showed that in

the globally coupled active rotator model with

randomly fluctuating interaction, multiplica-

tive noise induced an interesting nonequili-

brium phenomenon [21]-[23]: at a critical

noise intensity the system undergoes a noise-

induced phase transition and is split into clus-

ters both in stationary and moving phases. This

is a pure multiplicative noise effect and shows

a route to the clustering phenomena without

introducing higher Fourier mode interactions

which have usually been considered to be nec-

essary for clustering. It was also shown that

there exists a reentrant transition in the pres-

ence of multiplicative and additive noises. The

reentrant transition is an interplay effect of

multiplicative and additive noises.

In this paper we study extensively the

nonequilibrium phenomena of the globally

coupled active rotators induced by interplay

between multiplicative and additive noises. In

the computational point of view, the additive

noise plays a role of regulator to avoid the

singularity of probability distribution of the

Fokker-Planck equation [24]. The multiplica-

tive noise, in the presence of additive noise, in-

duces a bifurcation at a critical value of multi-

plicative noise intensity, thus forming a stable

two-cluster state. On the other hand, the ad-

ditive noise and the external source term sup-

press the effect of the multiplicative noise on

the system leading to frustration. Balancing

this frustration, the system reveals various in-

teresting phase portraits such as a reentrant

transition at an intermediate additive noise in-

tensity. Nature of the transition is also dis-

cussed.

In the following section we describe the

model under study in this paper. Section III

and IV are devoted to present the analytical and

numerical studies, respectively. Implication of

the nonequilibrium phenomena of the system

is discussed with summarized results in Sec. V.

II. MODEL

A (noiseless) model of N coupled active
rotators under study is expressed by the equa-
tion of motion [18], [21]-[23], [25]

d�i

dt
D!�b sin�i�

NX
jD1

Kij sin.�i�� j / ; (1)

where �i; iD 1; 2, � � � ; N, is the phase of the

ith rotator. ! is the intrinsic frequency that

is uniformly given to each rotator. The sec-

ond term on the right-hand side of (1) (from

now on we denote this as the b term) is in-

troduced to mimic the dynamics of stochas-

tic limit-cycle oscillators or excitable elements

[18], [21]-[23], [25]. The third term on the

right-hand side of (1) describes global cou-
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pling, which depends on the phase difference

of two rotators. If the coupling is excitatory,

i.e. Kij > 0, then this term gives perfect syn-

chrony, which means �i.t/D�.t/ for all i. In

the steady state�i dwells on two phases. When

jb=!j > 1, each element is at the stable fixed

point, �iD�0� sin�1.!=b/: When jb=!j<1,

the system is on the moving phase, i.e., each

�i is a rotator with frequency
p
!2�b2. The b

term of (1) characterizes the system whether it

is on the stationary state or on the moving state.
Now we assume the uniform excitatory in-

teraction Kij DK=N >0. If the system is cou-
pled to a fluctuating environment, the coupling
strength then may be assumed to be a stocha-
stic quantity, which implies

K
N
�! 1

N
.KC�M�i.t// ; (2)

where �i.t/ is a Gaussian white noise charac-
terized by

h�i.t/i D0 ;

h�i .t/� j .t
0/iD ıijı.t� t 0 / ; (3)

and �M measures the intensity of the multi-

plicative noise. The Gaussian white noise with

mean zero in the coupling yields the inhibitory

interactions as well as the excitatory ones. The

system therefore has an approximate symme-

try �i! �i C� when �M is large. When the

symmetry is exact, i.e., in the �M!1 limit,

one expects an equal intensity of the two clus-

ters located at �D0 and �. In the presence of

the multiplicative noise the system shows bi-

furcation from one-cluster state to two-cluster

state both in stationary and moving phases.

This noise-induced transition provides a route

to clustering phenomena without introducing

higher Fourier mode interactions, which can

not be seen in the deterministic case or in the

system with a simple additive noise.
For small multiplicative noise intensity the

perfect synchrony of the system persists lead-
ing to the singularity of the probability dis-
tribution of the Fokker-Planck equation cor-
responding to the equation of motion of the
system. To remove the singularity we intro-
duce an additive noise �i.t/ to the system. The
interplay between additive and multiplicative
noises also induces interesting nonequilibrium
phenomena such as a reentrant transition. Thus
in the presence of additive noise as well as mul-
tiplicative noise, (1) is replaced by the stochas-
tic differential equation

d�i

dt
D!�b sin�i� 1

N
.KC�M�i.t//

�
NX

jD1

sin.�i�� j /C�A�i .t/ ; (4)

where �i.t/ is a Gaussian white noise indepen-
dent to �i.t/’s. �i.t/ is characterized by

h�i.t/iD 0 ;

h�i .t/� j .t
0/iD ıijı.t� t 0 / ; (5)

h�i .t/� j .t
0/iD 0 ;

and �A measures the intensity of the additive

noise. Throughout this paper we set K D 1

using a suitable time unit.

III. ANALYTICAL STUDY

The macroscopic behavior of the system
can be described by the probability distribution
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P.�; t/ of�i at time t, whose evolution is gov-
erned by the Fokker-Planck equation [26]. In
the large N limit (4) yields the Fokker-Planck
equation

@P
@t
D� @

@�

��
!�b sin��

Z 2�

0
d�0 sin.���0 /

� n.�0; t/C ��
2
M

2

Z 2�

0
d�0 sin.���0 /n.�0; t/

�
Z 2�

0
d�00 cos.���00 /n.�00; t/

�
P.�; t/

�
C1

2
@2

@�2

��
�2

AC�2
M

�Z 2�

0
d�0 sin.���0 /

� n.�0; t/
�2�

P.�; t/

�
; (6)

with �D 1 for Stratonovich interpretation and
�D 0 for Itô interpretation. In (6) n.�; t/, the
normalized number density of the rotators with
phase � at time t, is given by

n.�; t/D 1
N

NX
iD1

ı.�i .t/��/ : (7)

Since �i ’s are statistically independent for the

uniform interaction, P.�; t/ may be identified

with n.�; t/. In this paper we’ll analyze the

steady state of n.�; t/.
When !D0 the steady state of the system

is a stationary state, i.e., @P=@tD0: In this case
the Fokker-Planck equation (6) can be solved
self-consistently [23] leading to

n.�/D Z�1.1C A cos �/
�.2��/=2

�.1� A cos�/�
�.2��/=2 ; (8)

where


D bC1
�M1

q
�2

AC�2
M1

2
;

AD �M1q
�2

AC�2
M1

2
(9)

with self-consistent equation

1D
Z 2�

0
cos�n.�/d� : (10)

In (8) Z is given by the normalization condition,R 2�
0 n.�/d� D 1: A detailed derivation of the

calculationhasbeenpresentedelsewhere[23].

Fig. 1. Plot of n.�/ as a function of �: solid line for

0>1 (�M D4:2�A and bD4:9�2
A�0:72) and dot-

ted line for 0< 1 (�M D 610�A and bD 49�2
A�

0:016).

n.�/ given by (8) has a maximum at �D0

or 2�: With the definition of 0�2
=.2��/A;
(8) shows that for0>1 n.�/ has a minimum at

�D�; and for0<1 n.�/ has a local maximum

at � D � and a minimum at � D cos�1.�0/
(Fig. 1). We identify multiple peaks in the dis-

tribution as corresponding to multiple clusters

of like-phased rotators, and interpret the distri-

bution as the instantaneous distributionof rota-

tor phases, rather than as the distribution over

time of the average phase. These are two phys-

ically distinct interpretations, and which one is
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correct can be (and was) checked in actual di-

rect simulations of the globally coupled sys-

tem. We found that the cluster interpretation is

valid (Fig. 3). Thus the critical point is given

by0D1 implying a continuous transition from

a one-cluster state to a two-cluster state at that

point: While for 0< 1 n.�/ has a peak repre-

senting a one-cluster state, for 0>1 it has two

peaks representing a two-cluster state.

Fig. 2. Phase diagrams for Stratonovich (solid lines) and

Itô (dashed lines) interpretations in �M -b plane at

various values of �A : Ss and Sd represent one-

cluster and two-cluster phases, respectively.

Figure 2 shows the phase diagrams for var-

ious values of �A when !D0: The figure also

shows that for small �A critical value of �M in-

creases monotonically as b increases. This be-

havior implies that b term suppresses the mul-

tiplicative noise effect on the system which

tends to split the rotators into two clusters. The

behavior can be understood easily because b

term gives pinning effect at �D 0 and depin-

ning effect at � D �: For large �A there is a

reentrant transition as b decreases. At large b

the system is in a one-cluster stationary (Ss)

state, and as b decreases the system goes to a

two-cluster stationary (Sd ) state, and as b de-

creases further the system reenters the Ss state.

This reentrant transition comes from the inter-

play of additive and multiplicative noises. The

additive noise suppresses effects of the b term

as well as the multiplicative noise. Thus the ef-

fects of additive and multiplicative noises and

b term are frustrated. These frustrated effects

result in the reentrant transition.

IV. NUMERICAL STUDY

For finite ! equation of motion of the sys-
tem considered here can be written as
d�i

dt
D!�b sin�i�C.f� j g/ sin�iC S.f� j g/cos�i

�.C.f� j g/ sin�i� S.f� j g/cos�i /�M�i.t/

C�A�i .t/ ; (11)

where

C.f� j g/D 1
N

NX
iD1

cos�i

S.f� j g/D 1
N

NX
iD1

sin�i : (12)

Here f� jg represents f�1;�2; � � � ;�N g. Since
�i.t/ and �i.t/ are independent Gaussian white
noises we can replace the noises by a Gaussian
white noise �i.t/ as

�.C.f� j g/ sin�i� S.f� j g/cos�i /�M�i.t/C�A�i.t/

!
q
.C.f� j g/ sin�i� S.f� j g/cos�i /2�

2
MC�2

A �i .t/ :

(13)
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Here �i.t/ is characterized by

h�i .t/iD0 ;

h�i .t/� j .t
0 /iD ıijı.t� t 0 / : (14)

Then the equation of motion (11) is replaced
by

d�i

dt
Dhi .f� jg/Cgi .f� jg/�i .t/ (15)

with

hi.f� j g/D!�b sin�i�C.f� jg/ sin�i

CS.f� j g/cos�i ;

gi.f� j g/D
q
.C.f� j g/ sin�i� S.f� j g/cos�i /2�

2
MC�2

A :

(16)

To investigate phase transitions at finite
!; we have performed numerical simulation
of (15). In the simulation, we have used the
efficient Runge-Kutta method based on the
Stratonovich interpretation [27] with discrete
time steps of1tD0:01 and random initial con-
figurations. The efficient Runge-Kutta method
used here is given by

hi0Dhi.f� j .tn /g/ ;
gi0D gi.f� j .tn /g/ ;
gi1D gi.f� j .tn /C 1

2
g j0� j.tn /

p
1tg/ ;

gi2D gi.f� j .tn /C 1
4

h j0.31tC�2
j .tn /1t/

C1
2

g j1� j.tn /
p
1tg/ ; (17)

gi3D gi.f� j .tn /C 1
2

h j0.31t��2
j .tn /1t/

Cg j2� j.tn /
p
1tg/ ;

hi1Dhi.f� j .tn /C 1
2

h j0.31t��2
j .tn /1t/

Cg j2� j.tn /
p
1tg/ ;

�i .tnC1 /D�i.tn /C 1
2
.hi0Chi1 /1t

C1
6
.gi0C2gi1C2gi2Cgi3 /�i.tn /

p
1t ;

with discrete time tn � n1t of integer n
where � j.tn /’s are independent Gaussian ran-
dom numbers with mean zero and variance
one, characterized by

h�i.tn /iD0;

h�i.tn /� j.tn0 /iD ıijınn0 : (18)

At each run, the first 4 � 104 time steps

per rotator have been discarded to achieve

steady state and 105 time steps per rotator have

been used to compute averages. We have con-

sidered the system of size ND1000:

For finite! the system has four phases, sta-

tionary one-cluster (Ss), stationary two-cluster

(Sd), moving one-cluster (Ps), and moving

two-cluster (Pd) phases. Figure 3 shows the

time evolutions of n.�; t/ at steady state in the

four phases. In Sd and Pd phases there exist

two stable clusters of rotators. The locations

of two clusters differ by �: The Gaussian white

noise with mean zero in the coupling yields the

inhibitory interaction as well as the excitatory

one. The system therefore has an approximate

symmetry�i!�iC�when�M is large. When

this symmetry is exact, i.e. in the �M !1
limit, one expects the equal intensity of the two

clusters.
To characterize phases of the system we

have calculated the temporal fluctuation of
C.t/; 1C; and the steady-state correlation
function, nc.�/; defined by

1CDhC2.t/it�hC.t/i2t ;

nc.�/D
Z 2�

0
d�0hn.�0; t/n.�C�0 ; t/it ; (19)
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Fig. 3. Time evolutions of n.�; t/ at various phases in steady state with unit time interval: (a) at !D1, bD0:9; �M D3,

and �A D 0:1 in stationary one-cluster phase (Ss), (b) at !D 1, bD 0:5; �M D 20, and �A D 0:1 in stationary two-

cluster phase (Sd), (c) at !D 1; b D 0:5; �M D 3; and �A D 0:1 in moving one-cluster phase (Ps), (d) at !D 1;

bD0:1; �M D10; and �AD0:1 in moving two-cluster phase (Pd ).

Fig. 4. Steady-state correlation function nc.�/ of rotator

number density in Ss (solid line for ! D 1; b D
0:9; �M D3; and �AD0:1) and Sd (dashed line for

!D 1; bD 0:5; �M D 20; and �A D 0:1) phases.

By definition nc.2���/Dnc .�/:

respectively, where h� � �it represents a time

average. Figure 4 shows the steady-state cor-

relation function at Ss and Sd phases. While

the correlation function nc .�/ has a peak at�D
0 in Ss phase, it has two peaks at �D0 and � in

Sd phase. In the Ps and Pd phases, the correla-

tion function has also a peak and two peaks, re-

spectively. The phases of the system are char-

acterized by the criterions shown in Table 1.

Figure 5 shows phase diagrams in �A -b

plane for various values of ! with �M D 3: In

Fig. 5(a) we show the phase diagram for!D0:

When �AD0; the system has a transition point

at a critical value of b; bc � 3:5: For b < bc,

the system is on Sd phase due to multiplicative

noise. For b>bc , it is on Ss phase implying b

term suppresses the multiplicative noise effect

on the system. As �A increases, the phase

structure persists up to some critical value

of �A , �c1 � 0:84; reducing the value of the

transition point bc: For �c1<�A <�c2 �0:94;
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Fig. 5. Phase diagrams in �A-b plane with �M D 3: (a) has been obtained from the analytical solution Eq. (8) for !D 0:

(b) and (c) have been obtained by numerical simulation performed for the system of size ND1000 for !D0:5 and

1, respectively. Lines in (b) and (c) are merely guides to eyes. Ss (Ps ) and Sd (Pd ) represent stationary (moving)

one-cluster and two-cluster phases, respectively.

Table 1. Criterions to characterize phases of the globally

coupled active rotators. np represents the num-

ber of peaksof steady-state correlation function

nc.�/.

phase 1C np

Ss zero one

Sd zero two

Ps nonzero one

Pd nonzero two

the system shows a reentrant transition, i.e., at

small b the system reenters into Ss phase. This

reentrant transition results from the frustration

effect between b term and additive noise be-

cause additive noise suppresses both effects of

b term and multiplicative noise. For �A >

�c2; the system is on Ss phase regardless of the

value of b implying additive noise suppresses

entirely the multiplicative noise effect.

Figure 5(b) shows the phase diagram for

! D 0:5. When �A D 0; there are two transi-

tion points at critical values of b, bc1 � 0:49

and bc2� 3:25: For b< bc1; ! drives the sys-

tem to moving state leading to Pd phase. For

bc1<b<bc2 ; b term pins the system to a fixed

point giving Sd phase. For b > bc2; b term

is large enough to induce Ss phase suppress-

ing entirely the multiplicative noise effect. As

�A increases, the phase structure persists up to

some critical value of �A ; �c1 � 0:6; reduc-

ing the values of the transition points bc1 and

bc2. At �A D �c1; the Sd phase shrinks and

as �A increases further Ps phase appears giv-

ing two transition points bc3 and bc4 at which

the phase transitions from Pd to Ps and from Ps
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Fig. 6. Phase diagrams in �A-�M plane with bD0:5: (a) has been obtained from the analytical solution Eq. (8) for !D0:

(b) and (c) have been obtained by numerical simulation performed for the system of size ND1000 for !D0:5 and

1, respectively. Lines in (b) and (c) are merely guides to eyes. Ss (Ps ) and Sd (Pd ) represent stationary (moving)

one-cluster and two-cluster phases, respectively.

to Ss occur, respectively. The transition points

bc3 and bc4 also decrease as �A increases. At

�A D �c2 � 0:7 the Pd phase shrinks leading

to a single transition from Ps to Ss at bc4: For

�A > �c2; the additive noise is large enough

to take off the two-cluster phase suppressing

the multiplicativenoise effect. As �A increases

further, bc4 decreases vanishing at �A D�c3 �
1:1: For �A >�c3 the system is on the Ss phase

for all b implying that the additive noise pins

the system to a single cluster state. In contrast

to the case of ! D 0; when ! D 0:5; there is

no reentrant transition. This result comes from

that the driving force ! relaxes the frustration

effect between additive noise and b term.

Figure 5(c) shows the phase diagram for

!D 1: When �A D 0; there are two transition

points at critical values of b; bc1 � 0:95 and

bc2 � 0:99: For b < bc1; the system is on the

Pd phase due to driving force! and multiplica-

tive noise �M : For bc1<b<bc2 ; b term domi-

nates the multiplicative noise effect leading to

the Ps phase. For b>bc2 ; b term pins the sys-

tem to a fixed point giving Ss phase. In the con-

trary to the case of ! D 0:5; when ! D 1; b

term dominates the multiplicative noise effect

before it pins the system to a fixed point. This

is because b must dominate the driving force

! to pin the system at a fixed point. As �A in-

creases, the phase structure persists up to some

critical value of �A ; �c1 � 0:7; at which bc1

shrinks to zero. For �c1 <�A <�c2 � 1:0; the

system has a transition point from Ps phase to

Ss phase. For �A >�c2 ; the system is on the Ss

phase for all b: In contrast to the case of sim-

ple additive noise case, which has been studied

by Shinomoto and Kuramoto [18], there is no

nonanalyticity in the phase boundary. Rather,

it continues to the infinite value of �M .

Figure 6 shows phase diagrams in �A-�M
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plane for various values of ! with bD 0:5: In

Fig. 6(a) we show the phase diagram for!D0:

When �AD0; the system has a transition point

at a critical value of �M , �Mc �1:7: For �M <

�Mc ; the system is on Ss phase by pinning due

to b term. The multiplicative noise induces a

bifurcation from stationary one-cluster phase

to stationary two-cluster phase at �M D �Mc

above which the system is on Sd phase. As �A

increases, the phase structure persists increas-

ing the value of �Mc . This implies that addi-

tive noise suppresses the multiplicative noise

effect.

Figure 6(b) shows the phase diagram for

!D0:5: When �AD0; the system has a transi-

tion point from Ss phase to Sd phase at a criti-

cal value of �M ; �Mc1�2:05: As �A increases,

the phase structure persists up to some critical

value of �A , �c1 � 0:03; increasing �Mc1 . For

�c1 <�A <�c2 �0:07; Ps phase appears at in-

termediate �M showing a reentrant transition

from Ps into Ss at small �M . This Ps phase

results from the suppression of b and �A ef-

fects on the system due to �M : The reentrant

region shrinks as �A increases finally vanish-

ing at �AD�c2 : For �c2 <�A <�c3 �0:8; the

system has two transition points from Ps to Ss

and from Ss to Sd at critical values of �M ; �Mc1

and �Mc2 , respectively. As �A increases above

�c3, only one transition point, �Mc1 , from Ss to

Sd exists.

Figure 6(c) shows the phase diagram for

!D 1: When �A D 0; there are two transition

points at critical values of �M , �Mc1�1:05 and

�Mc2�10:0: For �M <�Mc1; the system is on

the Ps phase due to driving force !: At �M D
�Mc1; there is a bifurcation from moving one-

cluster phase to moving two-cluster phase due

to the multiplicativenoise. For �M >�Mc2 ; the

system is on the stationary two-cluster phase

because multiplicative noise is large enough

to pin the system to a fixed point. As �A in-

creases, the phase structure persists up to some

critical value of �A , �c1 � 0:55; increasing

�Mc1 and decreasing �Mc2 . At �AD�c1; �Mc1

meets �Mc2 shrinking the Pd phase. As �A in-

creases above �c1; Ss phase appears implying

the multiplicative noise intensity to split the

system into two clusters is larger than that to

pin the system to a fixed point. As �A increases

further, Ss phase swells shrinking Ps phase. Fi-

nally, at �A � 1:0 Ps phase disappears leading

to a single transition point.

V. CONCLUSION

In this paper we considered the nonequili-

brium phenomena in globally coupled ac-

tive rotators with additive and multiplicative

noises. We showed that the multiplicative

noise induced the bifurcation from one-cluster

state to two-cluster state at a critical inten-

sity of the multiplicative noise. While driving

force! drives the system to move, b term plays

a role of pinning force which pins the system to

a fixed point. The cooperation of multiplica-

tive noise, !, and b term leads to four phases

of the system, stationary (moving) one-cluster

and two-cluster phases. Since b term gives
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pinning force at �D 0 and depinning force at

� D �; it suppresses the multiplicative noise

effect on the system. Additive noise sup-

presses all effects of the multiplicative noise,

!, and b term leading to frustration. This

frustrated effect provides various interesting

nonequilibriumphenomena such as a reentrant

transition. We showed the phase diagrams of

the system for various parameter values.

The active rotator model was presented as

a phenomenological model of oscillatory neu-

ral network. The dynamics of each neuron is

described by a phase variable. This descrip-

tion does not consider the origin of the oscil-

lations and oversimplifies the neuronal dyna-

mics. Nevertheless, such an approach is jus-

tified at present, because of the lack of ex-

perimental guidance on the neuronal circuitry.

We introduced the multiplicative noise into

the system to simulate the fluctuating synaptic

coupling. The splitting of the system into two

clusters induced by the multiplicative noise

implies the segmentation of visual scene in vi-

sual cortex. Therefore, our results exhibit an-

other route to the clustering and the segmenta-

tion phenomena, which cannot be seen in the

deterministic case or in the system with only

a simple additive noise. It would be interest-

ing if our results can be tested in physiological

systems.
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