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ABSTRACT

We investigate noise-induced phase tran-
sitions in globally coupled active rotators
with multiplicative and additive noises. In
the system there are four phases, stationary
one-cluster, stationary two-cluster, mov-
ing one-cluster, and moving two-cluster
phases. It is shown that multiplicative
noise induces a bifurcation from one-
cluster phase to two-cluster phase. Pinning
force also induces a bifurcation from mov-
ing phase to stationary phase suppressing
the multiplicative noise effect. Additive
noise reduces both effects of multiplicative
noise and pinning force urging the system
to the stationary one-cluster phase. The
frustrated effects of pinning force and
additive and multiplicative noises lead to a
reentrant transition at intermediate additive
noise intensity. Nature of the transition is
also discussed.
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I. INTRODUCTION

In sensory processing the linking of sen-
sory inputs across multiple receptive fields is
afundamentad task to identify distinct objects,
segment them from each other, and separate
them from background. This linkage is diffi-
cult to approach within the framework of most
current artificial neural network models be-
cause they useonly the levelsof activity inin-
dividual neurons to encode information. To
overcome this difficulty the model has been
suggestedinwhich global propertiesof stimuli
are identified through correlations in the tem-
pora firing patterns of different neurons [1].
Recent experiments provided support to this
concept showing that neurons in the primary
visua cortex of the cat can exhibit oscillatory
responses [2], [3]. The responses are coher-
ent over relatively large distances and are sen-
sitive to global properties of stimuli. The ex-
istence of tempora synchronization over rel-
atively large distances in the cortex suggests
that the processing of informationisacoopera-
tiveprocess of neuronswith different receptive
fields.

Recently the complex oscillating neural
network model was suggested as a model for
flexible patternrecognition[4], [5]. Themodel
is based on the self-organization of a spatio-
temporal patterninan oscillatingnetwork. The
flexibility of patternrecognitioniscaused from
the flexibility of connections by entrainment
and from the stability of dynamical patterns
for deformation. Although the model shows
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the possibility of flexible pattern recognition
by the oscillating neural network, the dyna
mics of the system is unclear because of its
complexity. A simple model is necessary to
investigate dynamics of oscillating neural net-
works.

Oscillations of neuronal activity in the vi-
sua cortex and their potentia role in compu-
tation have been the topic of much recent in-
vestigation. A coupled phase oscillator model
which consistsof neuronswith oscillatory out-
puts was suggested to understand the tempo-
ra and spatial coherence of the oscillations
[6]. The coupled phase oscillators have been
studied extensively as a model system to un-
derstand dynamics of various systems such as
Josephson-junction arrays [ 7], chemical reac-
tions [8], charge-density waves [9], [10] and
phased antenna arrays [11]. In the weak cou-
pling limit dynamics of the coupled phase os-
cillators has usualy been investigated in the
reduced model with the effective interaction
given by the first Fourier mode [12]-[15]. It
has been claimed, however, that higher Fourier
mode interactions are indispensable for inter-
esting collective dynamics [16], [17]. It has
been al so shown that the phase oscillatorswith
theinteraction of higher harmonics eventually
converged to the clustered states at some para
meter range.

Coupled active rotators have been studied
as a phase model of either coupled limit-cycle
oscillatorsor coupled excitable elements [18].
Particularly the question on the role of noise
in coupled rotator model s has been raised con-
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tinuously. Transitions induced by multiplica
tive noise in low dimensiona dynamical sys-
tems are by now a familiar phenomena [19],
but multiplicativenoisein spatially distributed
and/or high dimensional systems remains the
focus of current research [20]. The glob-
aly coupled active rotatorswith additive noise
show the transition from moving (excited)
state to stationary (inhibited) state at a critical
noise intensity. Recently, we showed that in
the globally coupled active rotator model with
randomly fluctuating interaction, multiplica-
tive noise induced an interesting nonequili-
brium phenomenon [21]-[23]: a a critica
noise intensity the system undergoes a noise-
induced phase transition and is split into clus-
tersbothin stationary and moving phases. This
isapure multiplicative noise effect and shows
a route to the clustering phenomena without
introducing higher Fourier mode interactions
which have usually been considered to be nec-
essary for clustering. It was also shown that
there exists a reentrant transition in the pres-
ence of multiplicativeand additivenoises. The
reentrant transition is an interplay effect of
multiplicative and additive noises.

In this paper we study extensively the
nonequilibrium phenomena of the globally
coupled active rotators induced by interplay
between multiplicativeand additive noises. In
the computational point of view, the additive
noise plays a role of regulator to avoid the
singularity of probability distribution of the
Fokker-Planck equation [24]. The multiplica-
tivenoise, in the presence of additivenoise, in-
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duces abifurcation at a critical value of multi-
plicative noise intensity, thusforming a stable
two-cluster state. On the other hand, the ad-
ditive noise and the external source term sup-
press the effect of the multiplicative noise on
the system leading to frustration. Balancing
this frustration, the system reveals various in-
teresting phase portraits such as a reentrant
transition at an intermediate additive noise in-
tensity. Nature of the transition is adso dis-
cussed.

In the following section we describe the
model under study in this paper. Section 111
and |V aredevotedto present theanaytical and
numerical studies, respectively. Implication of
the nonequilibrium phenomena of the system
isdiscussed with summarized resultsin Sec. V.

I1. MODEL

A (noiseless) model of N coupled active
rotators under study is expressed by the equa
tion of motion [18], [21]-[23], [25]

doi . N .

o =w—bsing, _; Kijsin(gi —¢), (1
where ¢, i =1, 2, ---, N, isthe phase of the
ith rotator. w is the intrinsic frequency that
is uniformly given to each rotator. The sec-
ond term on the right-hand side of (1) (from
now on we denote this as the b term) isin-
troduced to mimic the dynamics of stochas-
ticlimit-cycleoscillatorsor excitable elements
[18], [21]-[23], [25]. The third term on the
right-hand side of (1) describes globa cou-
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pling, which depends on the phase difference
of two rotators. If the coupling is excitatory,
i.e. Kjj > 0, then thisterm gives perfect syn-
chrony, which means ¢ (t) = ¢(t) for dl i. In
the steady state¢; dwellsontwo phases. When
|b/w| > 1, each element is at the stable fixed
point, ¢ = o =sin"*(w/b). When |b/w| < 1,
the system is on the moving phase, i.e., each
¢ isarotator with frequency vw? —b?. Theb
term of (1) characterizes the system whether it
isonthestationary stateor onthemoving state.

Now we assume the uniform excitatory in-
teraction Kj; = K/N > 0. If the system is cou-
pled to afluctuating environment, the coupling
strength then may be assumed to be a stocha-
stic quantity, which implies

K 1
N N K Foum®). 2

where 7; (t) is a Gaussian white noise charac-
terized by

(ni(H)) =0,
(mi On; ")) =8;8t—t"), (3

and oy measures the intensity of the multi-
plicativenoise. The Gaussian white noisewith
mean zero in the coupling yieldstheinhibitory
interactionsaswell asthe excitatory ones. The
system therefore has an approximate symme-
try ¢i — ¢i + 7 when oy islarge. When the
symmetry is exact, i.e., inthe oy — oo limit,
one expects an equal intensity of the two clus-
ters located at ¢ =0 and . In the presence of
the multiplicative noise the system shows bi-
furcation from one-cluster state to two-cluster
state both in stationary and moving phases.
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This noise-induced transition provides a route
to clustering phenomena without introducing
higher Fourier mode interactions, which can
not be seen in the deterministic case or in the
system with a simple additive noise.

For small multiplicativenoiseintensity the
perfect synchrony of the system persists lead-
ing to the singularity of the probability dis-
tribution of the Fokker-Planck eguation cor-
responding to the equation of motion of the
system. To remove the singularity we intro-
duce an additive noiseé; (t) to thesystem. The
interplay between additive and multiplicative
noises al so induces i nteresting nonequilibrium
phenomenasuch asareentrant transition. Thus
inthe presenceof additivenoiseaswell asmul-
tiplicativenoise, (1) isreplaced by the stochas-
tic differential equation

doi o, 1 :
W_a>—b5m¢>.—I\I(Kjtcrwm.(t))

N
x Y singi—¢p+oati®), (4
j=1
where & (1) isaGaussian white noiseindepen-
dent to n; (t)’s. & (t) is characterized by
(&) =0,
(& ®& ) =8ijs(t—t'), ©)
(& ®n; ) =0,
and o measures the intensity of the additive

noise. Throughout this paper we set K = 1
using a suitable time unit.

I1l. ANALYTICAL STUDY

The macroscopic behavior of the system
can bedescribed by the probability distribution
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P(¢, t) of ¢; attimet, whoseevolutionisgov-
erned by the Fokker-Planck equation [26]. In
thelarge N limit (4) yields the Fokker-Planck
equation

aP B] . o .
E:—ﬁ[{w—bsmp— ; d¢'sin(¢p—¢")
UUZ 2
xn@'. H+ =t | de'sin@—¢)Hn(@'. 1)

2
X A d¢>”cos(¢>—¢>”)n(¢>”,t)} P(dﬂ)}
1 &
+EW

2
(@, t)) }P<¢, t)} , ®)

2
Hoﬁﬁoﬁ( dg’ sin(p—¢')
0

with v =1 for Stratonovich interpretation and
v =20 for Itd interpretation. In (6) n(¢, t), the
normalized number density of therotatorswith
phase ¢ at timet, isgiven by

1 N
n@. H=1 > 8@ —¢). (7)
i=1

Since ¢;'s are statistically independent for the
uniform interaction, P(¢, t) may be identified
with n(¢, t). In this paper we'll analyze the
steady state of n(¢, t).

When w = 0 the steady state of the system
isastationary state, i.e., dP/ot =0. Inthiscase
the Fokker-Planck equation (6) can be solved
self-consistently [23] leading to

N(@) =Z*(1+ Acosg)’~?"/2

x (1— Acosg) 7~ @z (8)
where
b+ A
y= ,
omA, /o4 + 0%, A2
A
A—__ M2 9)

1/UZA—i—aﬁ,lAz
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with self-consistent equation

21
A= cos¢n(¢)de . (20)
0

In(8) Zisgivenby thenormalization condition,
JZn(¢)d¢ = 1. A detailed derivation of the
cal culationhasbeen presented el sewhere[23].

20
15 1

| ,
n@) 10 ! 7

o
I
oI
\

Fig. 1. Plot of n(¢) as afunction of ¢: solid line for
I'>1(om =4.204 andb=4.90% —0.72) and dot-
ted line for I' < 1 (oy = 61004 and b= 490% —
0.016).

n(¢) givenby (8) hasamaximumat ¢ =0
or 2. Withthe definitionof I'=2y/(2—v) A,
(8) showsthat for I' > 1 n(¢) hasaminimum at
¢=m, andforI" <1 n(¢) hasaloca maximum
a ¢ = 7 and a minimum at ¢ = cos 1(—I)
(Fig. 1). We identify multiple peaksin the dis-
tribution as corresponding to multiple clusters
of like-phased rotators, and interpret the distri-
bution astheinstantaneousdistribution of rota-
tor phases, rather than as the distribution over
time of theaverage phase. Theseare two phys-
icaly distinct interpretations, and which oneis
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correct can be (and was) checked in actua di-
rect simulations of the globally coupled sys-
tem. We found that the cluster interpretationis
valid (Fig. 3). Thusthe critical point is given
by I' = 1 implying a continuoustransitionfrom
aone-cluster state to atwo-cluster state at that
point: Whilefor I' < 1 n(¢) has a peak repre-
senting aone-cluster state, for I' > 1 it hastwo
peaks representing atwo-cluster state.

Fig. 2. Phasediagramsfor Stratonovich (solid lines) and
1td (dashed lines) interpretationsin oy -b plane at
various values of oa. S and & represent one-
cluster and two-cluster phases, respectively.

Figure 2 showsthe phase diagramsfor var-
iousvalues of oa when w=0. Thefigureaso
showsthat for small o critical valueof o in-
creases monotonically asb increases. Thisbe-
havior impliesthat b term suppressesthe mul-
tiplicative noise effect on the system which
tendsto splittherotatorsinto two clusters. The
behavior can be understood easily because b
term gives pinning effect at ¢ = 0 and depin-
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ning effect at ¢ = w. For large op thereisa
reentrant transition as b decreases. At large b
the system is in a one-cluster stationary (S;)
state, and as b decreases the system goesto a
two-cluster stationary (&) state, and as b de-
creasesfurther thesystem reentersthe S; state.
This reentrant transition comes from the inter-
play of additiveand multiplicativenoises. The
additive noise suppresses effects of the b term
aswell asthemultiplicativenoise. Thustheef-
fects of additive and multiplicative noises and
b term are frustrated. These frustrated effects
result in the reentrant transition.

IV. NUMERICAL STUDY

For finite @ equation of motion of the sys-
tem considered here can be written as

O o —bsing; —C1g; ) singy +S((6)) 0059y
—(C({¢;}) singi — S({¢;}) cosei)omi (t)
+oa&i(t), (11)

where

1 N
Clgih =5 D_cose
i=1
1 N
Sigih =15 2S¢ (12)
i=1

Here {¢j} represents {¢1, ¢2,---, ¢n}. Since
n; (t) and & (t) areindependent Gaussian white
noiseswe can replace the noisesby a Gaussian
white noise ¢ (t) as

—(C({¢jh singi — S({¢;}) cosgi)omni () +oaéi(t)

— /(i) singi — S(1 ) cosy 208, + 3.4 (1)
(13)
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Here ¢; () is characterized by

(¢Gi®) =0,
(GO =8;8t—t). (14)

Then the equation of motion (11) is replaced

by
depi
d—dt’=hi<{¢j})+gi<{¢>j})¢i<t) (15)

with

hi({¢;}) =w—bsing; —C({¢;}) Sing;
+S({¢j}) cosei,

6 (1) =/ (C((#1)) Singi — () COS1 )20 +03.

To investigate phase transitions at finite
w, we have performed numerical simulation
of (15). In the smulation, we have used the
efficient Runge-Kutta method based on the
Stratonovich interpretation [27] with discrete
timestepsof At=0.01 and randominitial con-
figurations. The efficient Runge-Kuttamethod
used hereis given by
hio=hi ({¢j (t))}) ,
gio=0i ({¢j (tn)}),

gir =i (¢ <tn>+%gjo¢j (tn)VAL}),

0o = 0119} () + ZhioBALHZ () AD)
+594) VAT, (7)

0is = 0119} (1) + 3ioBAL— () AD)
+0j2¢j () VAL ,

i = (16 () + S0 BAt— 1) AD
+0j2¢ (tn)VAL})

1
@i (thr1) =i (tn) + > (hio +hip) At
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1
+5 (Gio + 201+ 20i2 + Gi3) i (tn)V/ A,

with discrete time t, = nAt of integer n
where ¢; (ty)’s are independent Gaussian ran-
dom numbers with mean zero and variance
one, characterized by

(¢i(ta)) =0,
(Gi(tn )§J (tn)) = 5ij Snrr - (18)

At each run, the first 4 x 10* time steps
per rotator have been discarded to achieve
steady state and 10° time steps per rotator have
been used to compute averages. We have con-
sidered the system of size N =1000.

For finite w the system hasfour phases, sta-
tionary one-cluster (Ss), stationary two-cluster
(%), moving one-cluster (Ps), and moving
two-cluster (P4) phases. Figure 3 shows the
time evolutionsof n(¢, t) at steady statein the
four phases. In § and Py phases there exist
two stable clusters of rotators. The locations
of two clustersdiffer by . The Gaussianwhite
noisewith mean zero inthecouplingyieldsthe
inhibitory interaction as well as the excitatory
one. The system therefore has an approximate
symmetry ¢i — ¢+ whenoy, islarge. When
this symmetry is exact, i.e. inthe oy — oo
limit, one expectstheequal intensity of thetwo

clusters.

To characterize phases of the system we
have caculated the tempora fluctuation of
Ct), AC, and the steady-state correlation
function, nc(¢), defined by

AC=(C3(t))— (C(1))2,
2

Ne(¢)= [ d¢'(n(¢’.HNP+4", 1)), (19
0
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Fig. 3. Time evolutions of n(¢, t) at various phasesin steady state with unit timeinterval: (a) at w=1, b=0.9, oy =3,
and op =0.1 in stationary one-cluster phase (S;), (b) at w=1, b=0.5, oy =20, and o4 = 0.1 in stationary two-
cluster phase (&), (c) aa w =1, b=0.5, oy =3, and o5 = 0.1 in moving one-cluster phase (Ps), (d) at w =1,
b=0.1, oy =10, and o5 =0.1 in moving two-cluster phase (Py).

relation function at S; and S phases. While
2 ‘ ‘ thecorrelationfunctionn (¢) hasapeak at ¢ =
0in S; phase, ithastwo peaksat g=0and  in
S phase. Inthe P; and Py phases, the correla-
tionfunction hasalso apeak and two peaks, re-

1.5

o gpectively. The phases of the system are char-
05 acterized by the criterions shownin Table 1.
Figure 5 shows phase diagrams in oa-b
% | 5 3 plane for various values of o with oy = 3. In
0 Fig. 5(a) we show thephasediagram for w =0.
When o a =0, thesystem has atransition point
Fig. 4. Steady-state correlation function n. (¢) of rotator a acritical value of b, be ~ 3.5. For b < b,
number density in S; (solid line for w =1, b = thesystemison & phase due to multiplicative
0.9, om =3, andoa =0.1) and §; (dashedlinefor noise. For b> b, itison S phaseimplying b

w=1 b=0.5, oy =20, and o5 =0.1) phases.

term suppresses the multiplicative noise effect
By definition n. (27 — ¢) =n¢ (¢).

on the system. As op increases, the phase
structure persists up to some critical value
respectively, where (---); represents a time of oa, oc1 ~ 0.84, reducing the vaue of the
average. Figure 4 shows the steady-state cor- transition point be. For oy <op <o ~0.94,
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Fig. 5. Phasediagramsin oa-b plane with oy, = 3. (@) has been obtained from the analytical solution Eq. (8) for w =0.
(b) and (c) have been obtained by numerical simulation performed for the system of size N = 1000 for «=0.5 and
1, respectively. Linesin (b) and (c) are merely guidesto eyes. S (Ps) and §; (Py) represent stationary (moving)

one-cluster and two-cluster phases, respectively.

Tablel. Criterionsto characterize phasesof the globally
coupled activerotators. n, representsthe num-
ber of peaksof steady-statecorrelation function

Ne(¢).
phase AC Np
S zero one
S Zero two
Ps nonzero one
Py nonzero two

the system shows a reentrant transition, i.e., at
small b the system reentersinto S phase. This
reentrant transition results from the frustration
effect between b term and additive noise be-
cause additive noise suppresses both effects of

b term and multiplicative noise. For oa >
o, thesystemison S; phaseregardless of the
value of b implying additive noise suppresses
entirely the multiplicative noise effect.

Figure 5(b) shows the phase diagram for
w = 0.5. When o = 0, there are two transi-
tion points at critical values of b, by ~ 0.49
and b, ~ 3.25. For b < bey, w drivesthe sys-
tem to moving state leading to Py phase. For
be1 <b < by, bterm pinsthe systemto afixed
point giving § phase. For b > b, b term
is large enough to induce S phase suppress-
ing entirely the multiplicative noise effect. As
oa increases, the phase structure persistsup to
some critical value of oa, o, ~ 0.6, reduc-
ing the values of the transition points be; and
be. At oa = 01, the § phase shrinks and
as op increases further Ps phase appears giv-
ing two transition points beg and beg a which
the phasetransitionsfrom Py to Ps and from P



156  Seunghwan Kim et al.

ETRI Journal, volume 18, number 3, October 1996

®=0, b=0.5 ®=0.5,b=0.5

| S, ] m
PS
0 P P

(=

0 04 0.8 1.2 0 0.4 0.8 1.2

o=1,b=0.5 1

0.4

0.8 1.2
Ca

(©

Fig. 6. Phasediagramsin o -0 planewith b=0.5. (a) hasbeen obtained from the analytical solution Eq. (8) for «=0.
(b) and (c) have been obtained by numerical simulation performed for the system of size N = 1000 for «= 0.5 and
1, respectively. Linesin (b) and (c) are merely guidesto eyes. S (Ps) and S (Py) represent stationary (moving)

one-cluster and two-cluster phases, respectively.

to S occur, respectively. The transition points
bes and bes also decrease as o increases. At
oa = og ~ 0.7 the Py phase shrinks leading
to asingletransition from Ps to S; at bgg. For
op > og, the additive noise is large enough
to take off the two-cluster phase suppressing
themultiplicativenoiseeffect. Asop increases
further, b, decreases vanishing at oo =o¢3 ~
1.1. For oa > oc3 thesystemisonthe S; phase
for al b implying that the additive noise pins
the system to a single cluster state. In contrast
to the case of w = 0, when w = 0.5, thereis
no reentrant transition. Thisresult comesfrom
that the driving force w relaxes the frustration
effect between additive noise and b term.

Figure 5(c) shows the phase diagram for
w = 1. When o = 0, there are two transition
points at critical values of b, by ~ 0.95 and
b ~ 0.99. For b < by, the systemis on the
Py phaseduetodriving force w and multiplica-

tivenoiseopy . For b <b < be, bterm domi-
nates the multiplicative noise effect leading to
the Ps phase. For b > by, b term pinsthe sys-
temtoafixed point giving S; phase. Inthecon-
trary to the case of w = 0.5, whenw =1, b
term dominates the multiplicative noise effect
beforeit pinsthe system to afixed point. This
is because b must dominate the driving force
w to pinthe system at afixed point. Asoa in-
creases, the phase structure persistsup to some
critical value of op, oc1 ~ 0.7, a which by
shrinksto zero. For o¢ < op <o ~ 1.0, the
system has a transition point from Ps phase to
S; phase. Foroa > 0, thesystemisonthe S
phase for al b. In contrast to the case of sim-
ple additivenoise case, which has been studied
by Shinomoto and Kuramoto [18], thereis nho
nonanalyticity in the phase boundary. Rather,
it continuesto theinfinitevalue of oy .

Figure 6 shows phase diagrams in o a-ov
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plane for various values of w withb=0.5. In
Fig. 6(a) we show the phasediagramfor w =0.
When oa =0, the system has atransition point
at acritical vaueof oy, opme ~1.7. For oy <
oMc, thesystemison S; phase by pinning due
to b term. The multiplicative noise induces a
bifurcation from stationary one-cluster phase
to stationary two-cluster phase at oy = omc
abovewhich thesystemison S phase. Asoa
increases, the phase structure persists increas-
ing the value of owmc. Thisimplies that addi-
tive noise suppresses the multiplicative noise
effect.

Figure 6(b) shows the phase diagram for
w=0.5. Whenop =0, thesystem hasatransi-
tion point from S; phaseto & phase at acriti-
cal valueof oy, opmer ~2.05. Asop increases,
the phase structure persists up to some critical
value of op, o1 ~ 0.03, increasing oy . For
oc1 <oa <o ~0.07, Ps phaseappears at in-
termediate oy showing a reentrant transition
from Ps into S at smal oy. This Ps phase
results from the suppression of b and op ef-
fects on the system due to oy. The reentrant
region shrinks as o increases finaly vanish-
ingat oa=0c. FOr o <oa <og3~0.8, the
system has two transition pointsfrom Ps to S
andfrom S;to §; at critical valuesof om, omct
and o2, respectively. Asoa increases above
o3, only onetransition point, omc , from S to
S exists.

Figure 6(c) shows the phase diagram for
w = 1. When o = 0, there are two transition
pointsat critical valuesof oy, omcr ~1.05 and
omc2 ~ 10.0. For oy < opmer, thesystemison
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the P; phase due to driving force w. At oy =
omct, thereisabifurcation from moving one-
cluster phase to moving two-cluster phase due
tothemultiplicativenoise. For oy > omez, the
system is on the stationary two-cluster phase
because multiplicative noise is large enough
to pin the system to a fixed point. Asoa in-
creases, the phase structure persistsup to some
critical value of oa, o ~ 0.55, increasing
oMmc1 and decreasing opez. At oa =0¢1, OMelL
meets oy shrinking the Py phase. Asop in-
creases above o¢1, S phase appearsimplying
the multiplicative noise intensity to split the
system into two clustersis larger than that to
pinthe systemtoafixed point. Aso s increases
further, S phase swellsshrinking Ps phase. Fi-
nally, at oa ~ 1.0 Ps phase disappears leading
to asingletransition point.

V. CONCLUSION

In this paper we considered the nonequili-
brium phenomena in globaly coupled ac-
tive rotators with additive and multiplicative
noises. We showed that the multiplicative
noiseinduced the bifurcation from one-cluster
state to two-cluster state at a critical inten-
sity of the multiplicative noise. While driving
forcew drivesthe systemto move, btermplays
aroleof pinningforce which pinsthesystemto
a fixed point. The cooperation of multiplica-
tive noise, w, and b term leads to four phases
of the system, stationary (moving) one-cluster
and two-cluster phases. Since b term gives
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pinning force at ¢ = 0 and depinning force at
¢ = m, it suppresses the multiplicative noise
effect on the system. Additive noise sup-
presses al effects of the multiplicative noise,
w, and b term leading to frustration. This
frustrated effect provides various interesting
nonequilibrium phenomenasuch as areentrant
transition. We showed the phase diagrams of
the system for various parameter values.

The active rotator model was presented as
a phenomenologica model of oscillatory neu-
ral network. The dynamics of each neuron is
described by a phase variable. This descrip-
tion does not consider the origin of the oscil-
lations and oversimplifies the neuronal dyna-
mics. Nevertheless, such an approach is jus-
tified at present, because of the lack of ex-
perimental guidance on the neuronal circuitry.
We introduced the multiplicative noise into
the system to simulate the fluctuating synaptic
coupling. The splitting of the system into two
clusters induced by the multiplicative noise
impliesthe segmentation of visua scenein vi-
sual cortex. Therefore, our results exhibit an-
other route to the clustering and the segmenta-
tion phenomena, which cannot be seen in the
deterministic case or in the system with only
a simple additive noise. It would be interest-
ingif our results can be tested in physiological
systems.
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