• Title/Summary/Keyword: System of radiation protection

Search Result 409, Processing Time 0.025 seconds

A Study on Radiation Risk Recognition Aided System Visualizing Risk Information by CG

  • Katagiri, M.;Tuzuki, Y.;Sawamura, S.;Aoki, Y.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.425-428
    • /
    • 2002
  • The technology of Computer Graphics (CG) has been in great progress for almost 20 years and has proven to be a valuable tool for a broad variety of fields, including nuclear engineering. To work in any hazardous environment for example radiation field is particularly challenging because the danger is not always visually apparent. In this study as the application of CG to nuclear engineering field, we proposed to develop a radiation risk recognition aided system in which various radiation information; radiation risks, radiation distribution, hazard information and so on, were visualized by CG. The system used the server and client system. In the server there were two parts; one (main-server) was the database part having various data and the other (sub-server) was the visualization part visualizing the human phantom by POV-Ray. In the client there was the input and output part. The outputs from the system were various radiation information represented by coloring, circle graph and line graph intuitionally. The system is useful for a broad range of activities including radiation protection, radiation management, dose minimization, and demonstration to the public.

  • PDF

Quantifications of Intensity-Modulated Radiation Therapy Plan Complexities in Magnetic Resonance Image Guided Radiotherapy Systems

  • Chun, Minsoo;Kwon, Ohyun;Park, Jong Min;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.48-57
    • /
    • 2021
  • Background: In this study, the complexities of step-and-shoot intensity-modulated radiation therapy (IMRT) plans in magnetic resonance-guided radiation therapy systems were evaluated. Materials and Methods: Overall, 194 verification plans from the abdomen, prostate, and breast sites were collected using a 60Co-based ViewRay radiotherapy system (ViewRay Inc., Cleveland, OH, USA). Various plan complexity metrics (PCMs) were calculated for each verification plan, including the modulation complexity score (MCS), plan-averaged beam area (PA), plan-averaged beam irregularity, plan-averaged edge (PE), plan-averaged beam modulation, number of segments, average area among all segments (AA/Seg), and total beam-on time (TBT). The plan deliverability was quantified in terms of gamma passing rates (GPRs) with a 1 mm/2% criterion, and the Pearson correlation coefficients between GPRs and various PCMs were analyzed. Results and Discussion: For the abdomen, prostate, and breast groups, the average GPRs with the 1 mm/2% criterion were 77.8 ± 6.0%, 79.8 ± 4.9%, and 84.7 ± 7.3%; PCMs were 0.263, 0.271, and 0.386; PAs were 15.001, 18.779, and 35.683; PEs were 1.575, 1.444, and 1.028; AA/Segs were 15.37, 19.89, and 36.64; and TBTs were 18.86, 19.33, and 5.91 minutes, respectively. The various PCMs, i.e., MCS, PA, PE, AA/Seg, and TBT, showed statistically significant Pearson correlation coefficients of 0.416, 0.627, -0.541, 0.635, and -0.397, respectively, with GPRs. Conclusion: The area-related metrics exhibited strong correlations with GPRs. Moreover, the AA/Seg metric can be used to estimate the IMRT plan accuracy without beam delivery in the 60Co-based ViewRay radiotherapy system.

The Development Study of A Manganese Sulphate Bath System ($MnSO_4$용액조 장치 개발 연구)

  • Hwang, Sun-Tae;Lee, Kyung-Ju;Choi, Kil-Oung;Kim, Won-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.70-76
    • /
    • 1986
  • In order to establish the national standards of neutron measurements, a manganese sulphate ($MnSO_4$) bath system was developed under the IAEA technical support. This bath system was made up of a spherical s.s. 316 L bath, of 3.5 mm thick and of 125 cm internal diagmeter, filled with a manganese sulphate solution, a solution circulating system, and a $^5Mn\;{\gamma}-ray$ monitoring system. The solution pumped from the bath was introduced into a Marinelli beaker-type monitor vessel which was equipped with two seperate detectors, $3.8cm{\phi}{\times}3.8cm$ NaI(T1) crystals. The performance of the system were tested using the neutron sources, $^{241}Am-Be\;and\;^{252}Cf$, mounted at the center of the bath. From the decay curve analysis of $^{56}Mn$ activity, neutron emission rate of $^{252}Cf$ by the comparative method was obtained to be $3.71{\times}10^7\;n/s\;per\;50{mu}g$ as of November 15, 1985.

  • PDF

Development of Portable Memory Type Radiation Alarm Monitor (휴대용 메모리형 방사선 경보장치 개발)

  • Son, Jung-Kwon;Lee, Myung-Chan;Song, Myung-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.263-272
    • /
    • 1997
  • A Radiation Alarm Monitor has been developed and manufactured in order to protect radiation workers from over-exposure. A visual and audible alarm system has been attached to initiate evacuation when accident occurs such as an unexpected change of radiation level or an over-exposure. The Radiation Alarm Monitor installed with microprocessor can record the information of radiation field change between 90 min. before the alarm and 30 min. after the alarm and also provide the data to an IBM compatible computer to analyze the accidents and to set a counterplan. It features a wide detection range of radiation field(10 mR/h-100 R/h), radiation field data storage, portability, high precision (${\pm}5%$) due to self-calibration function, and adaption of a powerful alarm system. According to ANSI N42.17A, the most stringent test standards, performance tests were carried out under various conditions of temperature, humidity, vibration, and electromagnetic wave hindrance at Korea Research Institute of Standards & Science (KRISS). As a result, the Radiation Alarm Monitor passed all tests.

  • PDF

A Discussion for Alteration of the Radiation Issues Based on the Clipping Analyses of Radiation Articles Reported in Korea

  • Kim, Joo Yeon;Youn, Dol Mi;Yoo, Ji Yup;Park, Tai Jin
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.161-165
    • /
    • 2016
  • Background: Radiation accidents having occurred in recent containing the accident in Fukushima nuclear power plants of Japan were resulted to the increase in some public concern, anxiety and confusion for radiation or nuclear safety. The public anxiety for radiation is not being decreased though the announcements done in radiation research institutes in Korea. Therefore, this study aims at providing an effective system for radiation publicity to the public members by the clipping analysis for the radiation articles reported in the media. And, the relation between those radiation issues and the radiation perception to the public members is analyzed. Materials and Methods: The radiation articles reported by them in 2013 and 2014 have been collected, and they are then classified with the article characteristic, field and tendency. Classified articles have been reviewed by dividing as two year. The 210 articles have been compared for their tendencies, characteristics and fields by year reported, and their characteristic comparison by reported year are then reviewed. Results and Discussion: Though the frequency that the radiological accidents have occurred in worldwide is far low compared to the accidental frequencies occurred in the general industrial fields, the radiation perception is being still deteriorated because of its special problem, which is defined as exposure, contamination or radioactivity, about radiation. The basic principles for radiation communication were suggested for preventing some unnecessary misunderstanding due to the variation of understanding for radiation issues. Conclusion: It is necessary to perform a variety of strategies for the publicity in improving the radiation perception, to build a relationship with the press or the media and then to consistently interact with them. Radiation communication must be performed by radiation experts or complete charge department, and must be consistently performed and be taken predictable patterns.

Effects of surface radiation on the insulation for mechanical system (표면복사특성이 단열성능에 미치는 영향)

  • Oh, Dong-Eun;Park, Jong-Il;Lee, Min-Woo;Hong, Jin-Kwan;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1006-1011
    • /
    • 2006
  • In this study, a rational procedures for estimation of insulation thickness for condensation control or personnel protection has been investigated. Both horizontal pipe and vertical wall configuration are included. Design parameters are pipe diameter or, height of the wall, thermal conductivity, emissivity, and operating temperatures. The results Indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient. Adequate revision of specifications or standards has been also suggested.

  • PDF

Optimization of In-vivo Monitoring Program for Radiation Emergency Response

  • Ha, Wi-Ho;Kim, Jong Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.333-338
    • /
    • 2016
  • Background: In case of radiation emergencies, internal exposure monitoring for the members of public will be required to confirm internal contamination of each individual. In-vivo monitoring technique using portable gamma spectrometer can be easily applied for internal exposure monitoring in the vicinity of the on-site area. Materials and Methods: In this study, minimum detectable doses (MDDs) for $^{134}Cs$, $^{137}Cs$, and $^{131}I$ were calculated adjusting minimum detectable activities (MDAs) from 50 to 1,000 Bq to find out the optimal in-vivo counting condition. DCAL software was used to derive retention fraction of Cs and I isotopes in the whole body and thyroid, respectively. A minimum detect-able level was determined to set committed effective dose of 0.1 mSv for emergency response. Results and Discussion: We found that MDDs at each MDA increased along with the elapsed time. 1,000 Bq for $^{134}Cs$ and $^{137}Cs$, and 100 Bq for $^{131}I$ were suggested as optimal MDAs to provide in-vivo monitoring service in case of radiation emergencies. Conclusion: In-vivo monitoring program for emergency response should be designed to achieve the optimal MDA suggested from the present work. We expect that a reduction of counting time compared with routine monitoring program can achieve the high throughput system in case of radiation emergencies.

THREE-DIMENSIONAL VERIFICATION OF INTRACRANIAL TARGET POINT DEVIATION USING MRI-BASED POLYMER-GEL DOSIMETRY FOR CONVENTIONAL AND FRACTIONATED STEREOTACTIC RADIOSURGERY

  • Lee, Kyung-Nam;Lee, Dong-Joon;Suh, Tae-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.107-118
    • /
    • 2011
  • Conventional (SRS) and fractionated (FSRS) stereotactic radiosurgery necessarily require stringent overall target point accuracy and precision. We determine three-dimensional intracranial target point deviations (TPDs) in a whole treatment procedure using magnetic resonance image (MRI)-based polymer-gel dosimetry, and suggest a technique for overall system tests. TPDs were measured using a custom-made head phantom and gel dosimetry. We calculated TPDs using a treatment planning system. Then, we compared TPDs using mid bi-plane and three-dimensional volume methods with spherical and elliptical targets to determine their inherent analysis errors; finally, we analyzed regional TPDs using the latter method. Average and maximum additive errors for ellipses were 0.62 and 0.69 mm, respectively. Total displacements were 0.92 ${\pm}$ 0.25 and 0.77 ${\pm}$ 0.15 mm for virtual SRS and FSRS, respectively. Average TPDtotal at peripheral regions was greater than that at central regions for both. Overall system accuracy was similar to that reported previously. Our technique could be used as an overall system accuracy test that considers the real radiation field shape.

Analysis of Public Notice of NSSC and Field Application Case Regarding Security of Radioisotopes (원자력안전위원회 방사성동위원소 보안관련 고시 및 현장 적용 사례 분)

  • Lee, Hyun-Jin;Lee, Jin-Woo;Jeong, Gyo-Seong;Lee, Sang-bong;Kim, Chong-Yeal
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.303-310
    • /
    • 2018
  • Since Roentgen discovered X-rays, radiation sources have been utilized for many areas such as agriculture, industry, medicine and fundamental chemical research. As a result, human society has gained lots of benefits. However, if a radioactive material is used for the malicious purpose, it causes serious consequences to humanity and environment. Consequently, international organizations including International Atomic energy Agency (IAEA) have been emphasizing establishment and implementation of security management to prevent sabotage and illicit trafficking of radioactive materials. For this reason, the rule of technical standards of radiation safety management was revised and the public notice of security management regarding radioisotope was legislated in 2015 by Nuclear Safety and Security Commission (NSSC). Several radioactive sources which have to be regulated under the above rule and the public notice have been utilized in Advanced Radiation Technology Institute (ARTI) of Korea Atomic Energy Research Institute (KAERI). In order to control them properly, security management system such as access control and physical protection has been adapted since 2015. In this paper, we have analyzed the public notice of NSSC and its field application case. Based on the results, we are going to draw improvement on the public notice of NSSC and security system.