• Title/Summary/Keyword: System of radiation protection

Search Result 409, Processing Time 0.028 seconds

Development of Thermoluminescence and Optical Stimulated Luminescence Measurements System (열자극발광 및 광자극발광 측정장치의 개발)

  • Park, Chang-Young;Chung, Ki-Soo;Lee, Jong-Duk;Chang, In-Su;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • The thermoluminescence (TL) and optically stimulated luminescence (OSL) are commonly used to measure and record the expose of individuals to ionization radiation. Design and performance test results of a newly developed TL and OSL measurement system are presented in this paper. For this purpose, the temperature of the TL material can be controlled precisely in the range of $1{\sim}1.5^{\circ}C$ by using high-frequency (35 kHz) heating system. This high-frequency power supply was made of transformer with ferrite core. For optical stimulation, we have completed an optimal combination of the filters with the arrangement of GG420 filter for filtering the stimulating light source and a UG11 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optical stimulation. By using various control boards, the TL/OSL reader device was successfully interfaced with a personal computer. A software based on LabView program (National Instruments, Inc.) was also developed to control the TL/OSL reader system. In this study, a multi-functional TL/OSL dosimeter was developed and the performance testing of the system was carried out to confirm its reliability and reproducibility.

Development of A New Herbal Composition HemoHIM as An Immune-Improving Agent Using Irradiated Animal Models (방사선조사 동물모델 이용 면역기능개선-생약복합물 헤모힘(HemoHIM)개발)

  • Jo, Seong-Gi
    • Radioisotope journal
    • /
    • v.21 no.4
    • /
    • pp.38-45
    • /
    • 2006
  • A new herbal composition. HemoHIM, was developed using irradiated animal models and was successfully applied as an immune-improving agent. In a view that the protection and recovery of immune, hematopoietic and self-renewal tissues are essential for radioprotective agents, HemoHIM was developed based on a novel combination of three edible herbs (Angelica Radix, Cnidii Rhizoma. Paeonin Radix) that meet all those requirements. HemoHIM significantly protected the immune and hematopoietic system and enhanced their recovery in y-irradiated mice. For the application of HemoHIM as a health functional food and a supplementary agent for the cancer patients, the efficacy of HemoHIM to improve the immune functions was further evaluated in immune-depressed animals and humans. Animal studies demonstrated that HemoHIM significantly improved the immune functions in cyclophosphamide-treated mice, aged mice, and dexamethasone-treated mice. In human studies, HemoHIM enhanced the immune activity and cytokine secretion in sub-healthy volunteers, and alleviated the severe leukocyre depression in cancer patients during radiation and chemotherapy. Based on these results, HemoHIM was approved by Korea FDA as a material of health functional food for immune function improvement and will be commercially available soon. This case of HemoHIM research and development suggested that irradiated animals can be good models for biological degenerations such as immune depression, self-renewal tissue damage, and aging for the development of biological modulators.

  • PDF

An investigation of the nuclear shielding effectiveness of some transparent glasses manufactured from natural quartz doped lead cations

  • Kassem, Said M.;Ahmed, G.S.M.;Rashad, A.M.;Salem, S.M.;Ebraheem, S.;Mostafa, A.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2025-2037
    • /
    • 2021
  • The influence of lead cations on natural quartz (QZ) from Egypt as a glass shielding material for the composition with nominal formula (10Na2O - (90 - x) QZ - xPbO (where x = 30, 35, 40, 45 and 50 mol %)) was examined. The studied samples are synthesized via the melt quenching method at 1050 ℃. The X-ray diffraction XRD patterns were confirmed the glass nature for studied samples. Moreover, the optical properties, and the transparency for all compositions were examined by UV-Vis spectroscopy. Also, the major elemental composition of the natural quartz were estimated via the X-ray fluorescence (XRF) technique. Further, the density and molar volume were determined. Furthermore, the nuclear shielding parameters such as, mass attenuation coefficient, effective atomic number, electronic density, the total atomic, and electronic cross sections as well as the mean free path, and the half value layer with different gamma ray energies (81 keV-1407 keV) were calculated. Besides, the results showed that the shielding behavior towards the gamma ray radiation for all glass samples was increased as the increment in PbO concentration in the glass system.

Consideration about Radiological Technology Student's Frequent Workers Exposure Dose Rate (방사선과 재학생의 수시출입자 방사선 피폭선량에 대한 고찰)

  • Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.573-580
    • /
    • 2018
  • The Nuclear Safety Commission amended the Nuclear Safety Act by strengthening the safety management system for the frequent workers to the level of radiation workers. And students entering radiation management zones for testing and practical purposes are subject to frequent workers. It is inevitable that this will incur additional costs. In this paper, the validity of the amendment to the Nuclear Safety Act was to be assessed in terms of radiation protection. Study subjects are from 2014 to 2016, among university students in Seong-nam Korea and comparisons for analyses were made taking into account variables that are differences in annual, practical types, on-class and clinical practice students exposure dose. The analysis showed that exposures between on-class and clinical practice received were less than the annual dose limit of 1 mSv for the public. Then, some alternatives that excluding from frequent workers during on-class practice or mitigating the frequent workers' safety regulation for only on-class frequent workers can be considered. Optimization is how rational is the reduction in exposure dose to the costs required. Therefore, the results are hardly considered for optimization. If the data accumulated, it could be considered that the revision of the act could be evaluated and improved.

Radiological Assessment of Environmental Impact of the IF-System Facility of the RAON

  • Lee, Cheol-Woo;Whang, Won Tae;Kim, Eun Han;Han, Moon Hee;Jeong, Hae Sun;Jeong, Sol;Lee, Sang-jin
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.58-65
    • /
    • 2021
  • Background: The evaluation of skyshine distribution, release of airborne radioactive nuclides, and soil activation and groundwater migration were required for radiological assessment of the impact on the environment surrounding In-Flight (IF)-system facility of the RAON (Rare isotope Accelerator complex for ON-line experiment) accelerator complex. Materials and Methods: Monte Carlo simulation by MCNPX code was used for evaluation of skyshine and activation analysis for air and soil. The concentration model was applied in the estimation of the groundwater migration of radionuclides in soil. Results and Discussion: The skyshine dose rates at 1 km from the facility were evaluated as 1.62 × 10-3 μSv·hr-1. The annual releases of 3H and 14C were calculated as 9.62 × 10-5 mg and 1.19 × 10-1 mg, respectively. The concentrations of 3H and 22Na in drinking water were estimated as 1.22 × 10-1 Bq·cm-3 and 8.25 × 10-3 Bq·cm-3, respectively. Conclusion: Radiological assessment of environmental impact on the IF-facility of RAON was performed through evaluation of skyshine dose distribution, evaluation of annual emission of long-lived radionuclides in the air and estimation of soil activation and groundwater migration of radionuclides. As a result, much lower exposure than the limit value for the public, 1 mSv·yr-1, is expected during operation of the IF-facility.

Monte Carlo Calculation for Production Cross-Sections of Projectile's Isotopes from Therapeutic Carbon and Helium Ion Beams in Different Materials

  • Quazi Muhammad Rashed Nizam;Asif Ahmed;Iftekhar Ahmed
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.204-212
    • /
    • 2023
  • Background: Isotopes of the projectile may be produced along the beam path during the irradiation of a target by a heavy ion due to inelastic interactions with the media. This study analyzed the production cross-section of carbon (C) and Helium (He) projectile's isotopes resulting from the interactions of these beams with different materials along the beam path. Materials and Methods: In this study, we transport C and He ion beams through different materials. This transportation was made by the Monte Carlo simulation. Particle and Heavy Ion Transport code System (PHITS) has been used for this calculation. Results and Discussion: It has been found that 10C, 11C, and 13C from the 12C ion beam and 3He from the 4He ion beam are significant projectile's isotopes that have higher flux than other isotopes of these projectiles. The 4He ion beam has a higher projectile's isotope production cross-section along the beam path, which adds more impurities to the beam than the 12C ion beam. These projectile's isotopes from both the 12C and 4He ion beams have higher production cross-sections in hydrogenous materials like water or polyethylene. Conclusion: It is important to distinguish these projectile's isotopes from the primary beam particles to obtain a precise and accurate cross-section result by minimizing the error during measurement with a nuclear track detector. This study will show the trend of the production probability of projectile's isotopes for these ion beams.

ESTIMATION OF OFF-SITE DOSE AND RELEASE CONCENTRATION OF RADIOACTIVE LIQUID EFFLUENTS FROM RADWASTE TREATMENT SYSTEM IN KORI 3&4

  • Kim, H.S.;Son, J.K.;Kim, K.D.;Ha, J.H.;Song, M.J.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.291-298
    • /
    • 2001
  • The designed release rate of liquid effluents from radwaste treatment system should be calculated and evaluated during normal operation, including anticipated operational occurrence and be assured that the release concentration and off-site dose at unrestricted area do not exceed the limits of regulation. The expected annual release rate and off-site dose for the currently operating nuclear power plants in Korea had been calculated and evaluated using PWR-GALE and LADTAP-II which was based on USNRC Regulatory Guide 1.109. Recently, the MOST Notice 2001-2 related to release concentration and off-site dose at unrestricted area was revised to reflect the concept of ICRP-60. It is necessary for KORI 3&4 to re-calculate the release concentration and off-site dose and to compare these results with the limits of regulation. As the results of assessment, we confirmed that the release concentrations were less than its limits of MOST Notice 2001-2 and the off-site dose at unrestricted area using K-DOSE60 was 3.61E-03 mSv/yr to the age of five for the effective dose, and 4.10E-2 mSv/yr to thyroid of the age of five for the organ equivalent dose. We also confirmed the off-site dose was within the limits of MOST Notice 2001-2. Therefore, the release concentration and off-site dose re-evaluated at unrestricted area in KORI 3&4 were well below the regulation limits of MOST Notice 2001-2.

  • PDF

A Study on Exposure to radiation of the patient who visited an emergency room at a University Hospital (한 대학병원 응급실에 방문한 환자의 방사선 피폭에 관한 연구)

  • Ahn, Buyung-Ju;Lee, Sang-Bock;Lee, Jun-Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.3
    • /
    • pp.23-34
    • /
    • 2007
  • To find how much radiation was exposed the patients who visit emergency room, a measurement study was made for radiation amount toward 200 patients selected randomly among visitors to an emergency room in a university hospital from March 16 to 31st, 2006. The results are as follows ; 1. Among the subjects 50 person(25.0%) were transferred from other hospitals, 24 persons(8.3) come after traffic accident, 50 persons for other accident and 76 persons for general medical care. 2. The average frequency of X-ray taking was calculated as 6.4 time per person among transferred patients, 14.5 times per person among patients with traffic accident and 2.6 times per person among general medical care. 3. The radiation exposure amount by kind of X-ray showed 28.9mGyfor general X-ray diagnosis, 84.2mGy for CT scanning and 1.02mGy for other special radiation study. 4. Average radiation exposure amount was calculated as 24.6mGy by transferred patients, 55.2mGy by patients with traffic accident, 17.1mGy by patients with other accidents and 17.0mGy by general patients. 5. Through the comparison of radiation exposure amount among to subject with maximum allowance threshold by International Commission on X-ray Radium Protection, transferred patients exceeded 6 times than allowance in whole body except extremities and joints, blood forming organ, reproductive system, vitreous body of eye, bone, thyroid gland, skin and etc, Patient suffered from traffic accidents were exposed 10 times more than allowance. In conclusion, the radiation exposure amount during X-rat diagnosis re too much and exceeded allowance standard by International Commission on X-ray Radium Protection. So further study and preventive measure to decrease radiation exposure by patients who visit emergency room.

  • PDF

Simulation of Beta Ray Spectra in Liquid Scintillation Counting System by means of Monte Carlo Method (Monte Carlo 계산에 의한 액체섬광계수기의 베타선 스펙트럼 Simulation)

  • Yi, Chul-Young;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.2
    • /
    • pp.17-25
    • /
    • 1993
  • Beta ray spectra of $^3H,\;^{14}C\;and\;^{36}Cl$ in liquid scintillation counting system have been calculated using the Monte Carlo method by which physical behaviors of particle transport in medium were simulated. The calculations have been carried out on the basis of beta rays being slowing down according to the continuous slowing down approximation(CSDA) model. Beta rays generated in simulation geometry were traced until they lost their energy below 0.3keV that in known to be the detection limit in the liquid scintillation counter. Scintillator solution in which pure beta emitting radionuclides were dissolved uniformly was assumed to be bottled in the shape of right circular cylinder with 12.5mm in radius and 35mm in height. The comparison of the calculated and measured results showed satisfactory agreement between those two, with slight discrepancy due to self quenching in the case of lower energy of emitted beta particles in the solution.

  • PDF

Determination of $^{241}Pu$ in Environmental Samples Using Liquid Scintillation Counting System (액체섬광계수기를 이용한 환경시료중 $^{241}Pu$분석)

  • Lee, Myung-Ho;Hong, Kwang-Hee;Choi, Yong-Ho;Kim, Sang-Bog;Choi, Geun-Sik;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.91-98
    • /
    • 1996
  • An optimized method for determining beta-emitting $^{241}Pu$ in the presence of alpha-emitting nuclides was developed using a liquid scintillation counting system. Pulse shape analysis (PSA) level was set using pulse-shape discrimination method and the $^{241}Pu$ counting channel was adjusted for maximum value of figure of merit using the 241pu standard source. The volume of scintillant was determined for the maximum value of counting efficiency. This optimized method has been applied to environmental samples to measure concentration of $^{241}Pu$ in soils and mosses. Also it has been identified the origin of Pu deposited in Korea from the activity ratio of $^{241}Pu/^{239,\;240}Pu$.

  • PDF