• Title/Summary/Keyword: System of radiation protection

Search Result 409, Processing Time 0.025 seconds

Panel Session toward Improved Communication and Engagement with the Public after the Fukushima Daiichi Nuclear Power Plant Accident: Study Reports and Discussion with Specialists from Relevant Fields

  • Yoshida, Hiroko;Kuroda, Yujiro;Kono, Takahiko;Naito, Wataru;Sakoda, Akihiro
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.134-142
    • /
    • 2021
  • Background: From 2018 to 2020, the Expert Study on Public Understanding after the Fukushima Daiichi Nuclear Power Plant Accident (the Expert Study Group) identified and analyzed activities designed to promote public understanding of science and radiation since the Fukushima accident, and held discussions on how to achieve public understanding in the situation where public confidence has been lost, and how experts should prepare for dealing with the public. This panel session was held at the 53rd meeting of the Japan Health Physics Society on June 30, 2020. Materials and Methods: First, three subgroup (SG) leaders reported their research methods and results. Then, two designated speakers, who participated as observers of the Expert Study Group, commented on the activities. Next, the five speakers held a panel discussion. Finally, the rapporteur summarized. Results and Discussion: SG leaders presented reports from researchers and practitioners in health physics and environmental risks who provided information after the Fukushima accident. During the discussion, experts in sociology and ethics discussed the issues, focusing on the overall goals of the three groups, local (personal) and mass communication, and ethical values. Many of the activities instituted by the experts after the accident were aimed at public understanding of science (that is, to provide knowledge to residents), but by taking into account interactions with residents and their ethical norms, the experts shifted to supporting the residents' decision-making through public engagement. The need to consider both content and channels is well known in the field of health communication, and overlaps with the above discussion. Conclusion: How to implement and promote the public engagement in society was discussed in both the floor and designated discussions. Cooperation between local communities and organizations that have already gained trust is also necessary in order to develop relationships with local residents in normal times, to establish an information transmission system, and to make it work effectively.

In Situ Gamma-ray Spectrometry Using an LaBr3(Ce) Scintillation Detector

  • Ji, Young-Yong;Lim, Taehyung;Lee, Wanno
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.85-96
    • /
    • 2018
  • Background: A variety of inorganic scintillators have been developed and improved for use in radiation detection and measurement, and in situ gamma-ray spectrometry in the environment remains an important area in nuclear safety. In order to verify the feasibility of promising scintillators in an actual environment, a performance test is necessary to identify gamma-ray peaks and calculate the radioactivity from their net count rates in peaks. Materials and Methods: Among commercially available scintillators, $LaBr_3(Ce)$ scintillators have so far shown the highest energy resolution when detecting and identifying gamma-rays. However, the intrinsic background of this scintillator type affects efficient application to the environment with a relatively low count rate. An algorithm to subtract the intrinsic background was consequently developed, and the in situ calibration factor at 1 m above ground level was calculated from Monte Carlo simulation in order to determine the radioactivity from the measured net count rate. Results and Discussion: The radioactivity of six natural radionuclides in the environment was evaluated from in situ gamma-ray spectrometry using an $LaBr_3(Ce)$ detector. The results were then compared with those of a portable high purity Ge (HPGe) detector with in situ object counting system (ISOCS) software at the same sites. In addition, the radioactive cesium in the ground of Jeju Island, South Korea, was determined with the same assumption of the source distribution between measurements using two detectors. Conclusion: Good agreement between both detectors was achieved in the in situ gamma-ray spectrometry of natural as well as artificial radionuclides in the ground. This means that an $LaBr_3(Ce)$ detector can produce reliable and stable results of radioactivity in the ground from the measured energy spectrum of incident gamma-rays at 1 m above the ground.

Artificial neural network approach for calculating mass attenuation coefficient of different glass systems

  • A. Benhadjira;M.I. Sayyed;O. Bentouila;K.E. Aiadi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.100-105
    • /
    • 2024
  • In this study, we propose an alternative approach using Artificial Neural Networks (ANN) for determining Mass Attenuation Coefficients (MAC) in various glass systems. This method takes into account the weights of glass compositions, density, and photon energy as input features. The ANN model was trained and tested on a dataset consisting of 650 data points and subsequently validated through a K-fold cross-validation procedure. Our findings demonstrate a high level of accuracy, with R2 values ranging from 0.90 to 0.99. Additionally, the model exhibits robust extrapolation capabilities with an R2 score of 0.87 for predicting MAC values in a new glass system. Furthermore, this approach significantly reduces the need for costly and time-consuming computations and experiments, making it a potential tool for selecting materials for effective radiation protection.

Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

  • Choi, Bo Hwan;Jang, Gi Chan;Shin, Sung Min;Lee, Soo Ill;Kang, Hyun Gook;Rim, Chun Taek
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1206-1218
    • /
    • 2016
  • This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to $627^{\circ}C$ and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

Effect of the amount of battery charge on tube voltage in different hand-held dental x-ray systems

  • Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.42 no.1
    • /
    • pp.1-4
    • /
    • 2012
  • Purpose : Hand-held dental x-ray system is a self contained x-ray machine designed to perform intraoral radiography with one or two hands. The issue about its usage as general dental radiography is still in dispute. The aim of the present study was to assess the relationship between the amount of battery charge and the tube voltage in different handheld dental x-ray systems. Materials and Methods : Seven hand-held dental x-ray units were used for the study. Tube voltage was measured with Unfors ThinX RAD (Unfors Instruments AB, Billdal, Sweden) for 3 consecutive exposures at the different amount of battery charge of each unit. The average and the deviation percentage of measured kV from indicated kV of each unit were calculated. Results : Tube voltage of only 1 unit was 70 kV (indicated by manufacturer) and those of the others were 60 kV. Tube voltage deviation percentage from the indicated kV at the fully charged battery was from 2.5% to -5.5% and from -0.8% to -10.0% at the lowest charged battery. Conclusion : Tube voltages of all units decreased as the residual amount of the battery charge decreased. It is suggested that the performance test for hand-held x-ray system should be performed for the minimum residual charged battery as well as the full charged one. Persistent battery charging is suggested to maintain the proper tube voltage of the hand-held portable x-ray system.

UV Sensitivity of Korean Skin and The Effects of Factors affecting SPF Determination (한국인 피부의 자외선 감수성과 SPF 측정치에 미치는 인자의 영향)

  • 이병곤
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-17
    • /
    • 1991
  • Multiport-600 Solar SimulatorR is one of the most recent and convenient in-strument for evaluation of sun protection factor(SPF). In this study, we examined the practicability of the SPF determining system using Multiport -600 and the effects of several factors-light sources, seasons and experimental animals-on the minimal erythema dose(MED) and SPF. We also tested the UV sensitivity according to the sites of Korean people, And the ultraviolet radiation reaching the earth's surface In Seoul have been observed for one year. As a result of this study, the determinig system for SPF using Multiport-600 was proved to be a good system in accuracy and time-saving. The biological activity of fluorescence UV lamp of PUVA-800R was significantly higher than natural light or solar simulator with Xe arc lamp, and the determined MED became lower in inverse proportion to room temperature rise. Skin sensitivity by ultraviolet adiation was hights. in order \circled1 back \circled2 inns, upper arm \circled3 outer upper arm \circled4 foream. We also observed that UV radiation intensity was highest at noon in july and 1 sun burn unit(MED) was 28 minutes at that time.

  • PDF

The Experience on Intake Estimation and Internal Dose Assessment by Inhalation of Iodine-131 at Korean Nuclear Power Plants (국내 원전에서 $^{131}I$ 내부 흡입 에 따른 섭취량 산정과 내부피폭 방사선량 평가 경험 몇 개선방향에 대한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.129-136
    • /
    • 2009
  • During the maintenance period at Korean nuclear power plants, internal exposure of radiation workers occurred by the inhalation of $^{131}I$ released to the reactor building when primary system opened. The internal radioactivity of radiation workers contaminated by $^{131}I$ was measured using a whole body counter. Intake estimation and the calculation of committed effective dose were also conducted conforming to the guidance of internal dose assessments from publications of International Commission on Radiological Protection. Because the uptake and excretion of $^{131}I$ in a body occur quickly and $^{131}I$ is accumulated in the thyroid gland, the estimated intakes showed differences depending on the counting time after intake. In addition, since ICRP publications do not provide the intake retention fraction (IRF) for whole body of $^{131}I$, the IRF for thyroid was substitutionally used to calculate the intake and subsequently this caused more error in intake estimation. Thus, intake estimation and the calculation of committed effective dose were conducted by manual calculation. In this study, the IRF for whole body was also calculated newly and was verified. During this process, the estimated intake and committed effective dose were reviewed and compared using several computer codes for internal dosimetry.

STUDY ON MONITORING UNIT EFFICIENCY OF FLATTENING-FILTER FREE PHOTON BEAM IN ASSOCIATION WITH TUMOR SIZE AND LOCATION

  • Kim, Dae Il;Kim, Jung-In;Yoo, Sook Hyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.194-201
    • /
    • 2013
  • To investigate monitoring unit (MU) efficiency and plan quality of volumetric modulated arc therapy (VMAT) using flattening-filter free (FFF) photon beam in association with target size and location. A virtual patient was generated in Eclipse$^{TM}$ (ver. A10, Varian Medical Systems, Palo Alto, USA) treatment planning system. The length of major and minor axis in axial view was 50 cm and 30 cm, respectively. Cylindrical-shaped targets were generated inside that patient at the center (symmetric target) and in the periphery (asymmetric target, 7.5 cm away from the center of the patient to the right direction) of the virtual patient. The longitudinal length was 10 cm and the diameters were 2, 5, 10 and 15 cm. Total 8 targets were generated. RapidArc$^{TM}$ plans using TrueBeam STx$^{TM}$ were generated for each target. Two full arcs were used and the axis of rotation of the gantry was set to be at the center of the virtual patient. Total MU, homogeneity index (HI), target mean dose, the value of gradient measure and body mean dose were calculated. In the case of symmetric targets, averaged total MU of FFF plan was 23% and 19% higher than that of flattening filter (FF) plan when using 6 MV and 10 MV photons, respectively. The difference of HI, target mean dose, gradient measure and body mean dose between FF and FFF was less than 0.04, 2.6%, 0.1 cm and 2.2%, respectively. For the asymmetric targets, total MU of FFF plan was 21% and 32% was higher than that of FF when using 6 MV and 10 MV photons, respectively. The homogeneity of the target was always worse when using FFF than using FF. The maximum difference of HI was 0.22. The target mean dose of FFF was 3.2% and 4.1% higher than that of FF for the 6 MV and 10 MV, respectively. The difference of gradient measure was less than 0.1 cm. The body mean dose was higher when using FFF than FF about 4.2% and 2.8% for the 6 MV and 10 MV, respectively. No significant differences between VMAT plans of FFF beam and FF beam were observed in terms of quality of treatment plan. The HI was higher when using FFF 10 MV photons for the asymmetric targets. The MU was increased noticeably when using FFF photon beams.

Optical Characterizations of TlBr Single Crystals for Radiation Detection Applications

  • Oh, Joon-Ho;Kim, Dong Jin;Kim, Han Soo;Lee, Seung Hee;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.167-171
    • /
    • 2016
  • Background: TlBr is of considerable technological importance for radiation detection applications where detecting high-energy photons such as X-rays and ${\gamma}$-rays are of prime importance. However, there were few reports on investigating optical properties of TlBr itself for deeper understandings of this material and for making better radiation detection devices. Thus, in this paper, we report on the optical characterizations of TlBr single crystals. Spectroscopic ellipsometry (SE) and photoluminescence (PL) measurements at RT were performed for this work. Materials and Methods: A 2-inch TlBr single crystalline ingot was grown by using the vertical Bridgman furnace. SE measurements were performed at RT within the photon energy range from 1.1 to 6.5 eV. PL measurements were performed at RT by using a home-made PL system equipped with a 266 nm-laser and a spectrometer. Results and Discussion: Dielectric responses from SE analysis were shown to be slightly different among the different samples possibly due to the different structural/optical properties. Also from the PL measurements, it was observed that the peak intensities of the middle samples were significantly higher than those of the other two samples. With the given values for permittivity of free space (${\varepsilon}_0=8.854{\times}10^{-12}F{\cdot}m^{-1}$), thickness (d = 1 mm), and area ($A=10{\times}10mm^2$) of the TlBr sample, capacitances of TlBr were 6.9 pF (at $h{\nu}=3eV$) and 4.4 pF (at $h{\nu}=6eV$), respectively. Conclusion: SE and PL measurement and analysis were performed to characterize TlBr samples from the optical perspective. It was observed that dielectric responses of different TlBr samples were slightly different due to the different material properties. PL measurements showed that the middle sample exhibited much stronger PL emission peaks due to the better material quality. From the SE analysis, optical, dielectric constants were extracted, and calculated capacitances were in the few pF range.