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A B S T R A C T

In this study, we propose an alternative approach using Artificial Neural Networks (ANN) for determining
Mass Attenuation Coefficients (MAC) in various glass systems. This method takes into account the weights of
glass compositions, density, and photon energy as input features. The ANN model was trained and tested
on a dataset consisting of 650 data points and subsequently validated through a K-fold cross-validation
procedure. Our findings demonstrate a high level of accuracy, with 𝑅2 values ranging from 0.90 to 0.99.
Additionally, the model exhibits robust extrapolation capabilities with an 𝑅2 score of 0.87 for predicting
MAC values in a new glass system. Furthermore, this approach significantly reduces the need for costly and
time-consuming computations and experiments, making it a potential tool for selecting materials for effective
radiation protection.
1. Introduction

Radiation in the environment that can cause ionization occurs con-
stantly and can originate from either natural or man-made sources.
Radiation can be emitted from both naturally occurring and artificial
sources. Radionuclides in the atmosphere, water, rocks, and soil water
are all examples of radiation that comes from natural sources. Natural
radiation can also come from cosmic rays. nuclear accidents, nuclear
power plants, nuclear weapon testing, research labs, and other sources
can all manufacture synthetic radionuclides for various purposes [1–3].
Ionizing radiation is utilized—regularly in a wide variety of disciplines,
including industry, energy, medical diagnostics, and other technologi-
cal applications. Unfortunately, there is cause for concern regarding the
potential adverse long-term repercussions of rising ionizing radiation
exposure caused by growing usage [4–6]. In addition, a variety of
investigations have shown that the annual number of people who
pass away from cancer for reasons that might be strongly linked to
radiation exposure is growing. When radiation is used frequently, it is
necessary to take safety measures to protect human beings from being
exposed to it. Ionizing radiation comes in a variety of forms, the most
dangerous of which are X-rays and gamma rays (photons), which may
pass through solid things and travel extremely long distances [7–10].
On the other hand, if one is exposed to photons for an extended period
of time, they can cause cancer, genetic damage, the destruction of blood
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cells, and even death. As a result, it is essential to minimize exposure
periods as low as possible by minimizing the amount of time spent
near radiation sources and maintaining the maximum practical distance
between individuals and radiation sources. One such law is known as
the inverse square law, and it states that the intensity of radiation
is proportional to the inverse of the square of the distance from the
source [11–14].

Over the years, different materials have been used for radiation
shielding applications, including ceramics, bricks, alloys, glasses, poly-
mers, and nanocomposites for a variety of applications [15–17]. Un-
derstanding how gamma rays interact with matter is crucial in order to
protect against them [18,19]. The mass attenuation coefficient (MAC)
is a basic parameter that can describe the photon–matter interaction.
So, it is important to determine the MAC for different materials in
order to decide which material can be effectively used for protection
from gamma radiation. There are different ways to determine the
MAC such as using theoretical calculations with the help of known
software (WinXom, Phy-X, etc.), experimental methods, and simulation
approaches [20–23]. Experimental results are unsatisfactory for every
energy range, and varied material kinds and the rapid expansion of
materials made this work fruitless. Monte Carlo simulations are also
employed in the process of finding MAC for particular types of materi-
als; however, they can demand a significant amount of computational
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time. When performing theoretical calculations, despite the fact that
the basic principles are familiar, it is typically challenging to identify a
precise solution to real-world physical problems [24–27].

Machine learning algorithms are currently being employed in every
sector, from the field of particle physics [28] to material science [29,
30], and even solving inverse design problems [31,32], whenever it is
necessary to analyze complicated data. They are particularly helpful in
the field of non-linear regression, and in theory, they can model any
curve. Artificial Neural Networks (ANNs), which are capable of recog-
nizing difficult correlations and patterns across datasets, are emerging
as a powerful tool that has grown increasingly popular in the field of
machine learning. This popularity can be attributed to the fact that
ANNs are able to comprehend complex patterns. By being trained on
vast quantities of previously determined radiation shielding data, such
as MAC values, ANNs are able to generalize their findings and produce
accurate predictions for additional data. The utilization of ANNs in the
prediction of the MAC for materials gives a number of important ad-
vantages that cannot be achieved by other standard methods. Artificial
neural networks (ANNs) have the power to express advanced nonlinear
relationships between the glasses’ composition and their MAC, which
may be difficult to model using standard mathematical methods. These
interactions can be caused by the fact that the glasses are made up of
several components. Furthermore, ANNs excel at automatically iden-
tifying the variables that have the greatest impact on the MAC by
gathering useful traits from the input data. This reduces the need for
human feature selection or prior knowledge of fundamental physics,
allowing the model to show subtle correlations that human-designed
methods could overlook. The ANN’s ability to learn and adapt lets it
notice complex information and nonlinear connections that facilitate
precise MAC predictions. The ability of ANNs to manage datasets that
are both extensive and diverse is an additional advantage of utilizing
these models.

The primary objective of this research is to present confirmation
that ANN models are helpful for precisely predicting the MAC of various
glass systems. We seek to develop a reliable predictive model by in-
structing an artificial neural network (ANN) using a comprehensive list
of glass compositions and the MAC values associated with each of those
compositions. This will make it possible for us to determine the MAC
for glasses in a way that is not only accurate but also time-effective.
The ANN model that was suggested has the capability to significantly
reduce the necessity for sophisticated computational computations or
experimental observations. As a consequence of this, it has the potential
to supply both academics and industry professionals with a useful tool
for the rapid prediction of the MAC of various glasses.

2. Methodology

2.1. Data analysis

In this study, we aim to investigate the relationship between the
molar fraction density and energy of oxide glasses containing the
components PbO, WO3, Li2O, B2O3, GeO2, BaO, MoO3 and P2O5 and
heir mass attenuation coefficient. The data herein were collected from
ublished scientific papers [33–36]. The dataset comprises 650 rows
nd 11 features, including glass composition molar fraction in (wt%),
lass density, energy ranging from 0.015 to 15 MeV, and the target
ariable, mass attenuation coefficient in (cm2∕g). which is a function
f the energy and the atomic number of the material [36] and can be
alculated using the following equation:

𝐴𝐶 =
∑

𝜔𝑖(
𝜇
𝜌
)𝑖 (1)

here 𝜔𝑖 and ( 𝜇𝜌 )𝑖 are the weight fraction and the mass attenua-
ion coefficient of 𝑖th element respectively, which can be obtained
xperimentally or collected from XCOM or WinXCom program [37]

Descriptive statistics were computed to summarize the dataset, and
he results are presented in Table 1. The table includes the count, mean,
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Table 1
Statistical summary of the dataset.

count mean std min 25% 50% 75% max

PbO 650.00 12.12 19.98 0.00 0.00 0.00 20.00 60.00
Bi2O3 650.00 5.00 7.47 0.00 0.00 0.00 10.00 20.00
WO3 650.00 1.92 3.94 0.00 0.00 0.00 0.00 10.00
Li2O 650.00 8.85 11.72 0.00 0.00 2.50 10.00 40.00
B2O3 650.00 31.92 26.81 0.00 0.00 27.50 60.00 70.00
GeO2 650.00 2.50 6.97 0.00 0.00 0.00 0.00 30.00
BaO 650.00 16.92 16.60 0.00 0.00 15.00 30.00 50.00
MoO3 650.00 10.77 20.57 0.00 0.00 0.00 10.00 70.00
P2O5 650.00 10.00 16.30 0.00 0.00 0.00 20.00 50.00
Density (g/cm3) 650.00 4.47 1.41 2.55 3.49 3.87 5.87 7.08
E (Mev) 650.00 2.35 3.72 0.01 0.08 0.50 3.00 15.00
MAC (cm2/g) 650.00 4.74 13.95 0.02 0.04 0.10 1.94 99.79

standard deviation (std), minimum (min), and maximum (max) values,
as well as the 25th, 50th, and 75th quartiles.

Additionally, the distribution of the mass attenuation coefficient
(MAC) using Kernel Density Estimation (KDE) is illustrated in Fig. 1.
The distribution appears to be skewed toward zero, resulting in a
Gaussian distribution centered around zero. The majority of the values
fall between zero and 20, while the remaining values are sparsely
distributed between 20 and 90.

Furthermore, Fig. 2 shows the correlation matrix. Positive corre-
lations are observed between MAC and PbO, Bi2O3, WO3, GeO2, and
ensity, with corresponding p-values ranging from 0.15 to 0.19. These
esults suggest that higher concentrations of these oxides in a material
ay lead to an increase in its mass attenuation coefficient.

On the other hand, negative correlations are observed between MAC
nd Li2O, B2O3, and BaO, with respect to energy. This indicates an
nverse relationship between the concentrations of these oxides and
AC. However, it is important to note that the p-values are less than 1,

ndicating that there is no linear relationship between these variables
nd the mass attenuation coefficient.

.2. Artificial neural networks

Artificial Neural Network (ANN) [38], also known as a multilayer
erceptron (MLP), is a powerful machine learning model widely used
n regression tasks due to its flexibility (universal approximation) [39].
t consists of multiple layers, including an input layer, hidden layers,
nd an output layer. Each layer is composed of individual neurons
hat perform mathematical computations, taking input variables and
roducing corresponding output values.

More formally, considering the output of the 𝑖th neuron in the
th hidden layer. Denoted as 𝑦𝑖 is determined by the weights (𝑤𝑖)
ssociated with the neuron’s connections and the input values (𝑥𝑖).
dditionally, a bias term (𝑏𝑖) is added to the weighted sum of inputs:

𝑖 = 𝑤𝑇
𝑖 𝑥𝑖 + 𝑏𝑖 (2)

The output of the 𝑗th hidden layer, denoted as ℎ𝑖, it can be expressed
s a function (𝑓 ) applied to the weighted sum of inputs (∑𝑛

𝑖=1 𝜔𝑖𝑥𝑖+𝑏𝑖).
he activation function 𝑓 is typically a non-linear function, allowing
he neural network to capture complex relationships between inputs
nd outputs:

𝑗 = 𝑓

( 𝑛
∑

𝑖=1
𝜔𝑖𝑥𝑖 + 𝑏𝑖

)

(3)

hree types of activation functions were used in this work Exponential
inear Unit (ELU), Rectified Linear Unit (ReLU), and Sigmoid

𝐿𝑈 (𝑥, 𝛼) =

{

𝑥 if 𝑥 > 0
𝛼 ⋅ (𝑒𝑥 − 1) if 𝑥 ≤ 0

(4)
𝑒𝐿𝑈 (𝑥) = max(0, 𝑥) (5)
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Fig. 1. Dataset mass attenuation coefficient distribution.
Fig. 2. Pearson correlation coefficient matrices heatmap.
𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

(6)

During the training process of an ANN, the back-propagation learn-
ing algorithm is employed [40]. This algorithm aims to adjust the
network weights based on the calculated error (Loss) between the
predicted outputs and the actual values of MAC, iteratively updating
the weights to minimize this error.

To optimize the learning process, a gradient descent optimizer
called ADAM (Adaptive Moment Estimation) is used [41] to improve
the training performance. ADAM adapts the learning rate for each
weight parameter based on both the gradient descent and the previous
updates. More details about our ANN including the number of nodes
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in each layer, activation functions, dropout rates, number of epochs
(iterations), and the learning rate. are provided in Table 2

2.3. Evaluation method

The performance of the artificial neural network was evaluated
using k-fold cross-validation. The dataset is divided into k equally sized
folds and the model is then trained and tested k time, each time (𝑘−1) of
the folds as a training set and the remaining fold for testing the model.

To quantify the fitness and accuracy of the models, the coefficient
of determination (𝑅2) and root mean squared error (RMSE) were
employed as evaluation metrics. These metrics are defined as follows:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦
′𝑖 − 𝑦𝑖)2

∑ 𝑛 (7)

𝑖 = 1 (𝑦𝑖 − �̂�)2
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Table 2
Artificial neural network specifications.

Layer Number of nodes Activation function Dropout rate

Input layer 7 Linear non
1st hidden layer 110 Elu (Exponential Linear Unit) 0.15
2nd hidden layer 90 Sigmoid 0.10
3rd hidden layer 30 ReLU (Rectified Linear Activation Function) non
Output layer 1 (Mac) Linear non

Number of Epochs 5000

Learning Rate 0.001
Fig. 3. Predicted versus the actual values of the mass attenuation coefficient.
𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦′𝑖 − 𝑦𝑖)2 (8)

Here, 𝑁 represents the total number of samples, 𝑦′𝑖 denotes the model-
predicted value, 𝑦𝑖 represents the actual value, and �̂� is the average
of the actual values. The coefficient of determination, 𝑅2, is a non-
negative metric ranging from 0 to 1. It measures the model’s robustness
in fitting the real data, with a value closer to 1 indicating a better-fitting
model. On the other hand, the accuracy of the model is considered good
when the RMSE tends to 0, indicating that the predicted values are close
to the actual values.

3. Result and discussion

Calculating the mass attenuation coefficient of materials is vital for
nuclear science, as a result, we have established an artificial neural
network to predict the MAC of different glasses as recapitulated in
Table 2. We have noticed that the data is sparse (many zeros), hence,
we have used the L1 norm as a loss function (the sum of the absolute
values). This loss function is particularly useful when dealing with
sparse data. Additionally, the L1 norm is less sensitive to outliers
compared to other loss functions [42]. To reduce overfitting we have
included a dropout regularization rate during the training phase [43].
The proposed ANN was implemented using the Pytorch framework
which is an artificial intelligence Python library.

After constructing the artificial neural networks we split the data
into 5 folds for cross-validation, the ANN was repeatedly trained with
4 folds and tested for the remaining fold. The results are shown in the
103
Table 3 and visually summarized in Fig. 3. The results indicate a high
level of model performance with a 𝑅2 score ranging from 0.90 to 0.99
and an average of 0.95. The RMSE of the testing folds are relatively low
ranging from 0.67 to 2.11, with an average of 1.91. However, we can
observe that the model deviate in predicting certain point of the data as
shown in Fig. 3 this is because of the skewness of the MAC distribution
as shown in Fig. 1 and discussed in the data analysis section, in this
context these points are considered to be outliers as the MAC values
are highly populated between 0 and 40 which results in a heavy tail
compared to the other values

To assess the capability of generalization of our model, we con-
ducted predictions for the mass attenuation coefficient (MAC) of ad-
ditional glass samples (see Table 4) that were not included in the
cross-validation procedure. In Fig. 4 we present a visual representa-
tion of the actual MAC values versus the predicted values for these
corresponding glasses.

Remarkably, the model demonstrates impressive accuracy in pre-
dicting 100 MAC values, achieving a high 𝑅2 score of 0.89. This
indicates that the model can accurately predict a substantial portion
of the data, showcasing its strong predictive capabilities. However, it
is essential to note that the relatively high root mean square error
(RMSE) of 5.58 suggests that there are still some variations between
the predicted and actual values.

Overall, the results indicate that the model shows promising predic-
tive and generalization ability, as evidenced by its accurate predictions
for both the cross-validation phase and the additional glass samples
MAC prediction. The high 𝑅2 score further validates the model’s pro-
ficiency in capturing the underlying relationships between the input
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Fig. 4. Comparison of predicted and actual mass attenuation coefficients for new glasses.
Table 3
R2 score and RMSE of the cross-validation folds.
Fold R2 score RMSE

Fold 1 0.99 1.18
Fold 2 0.99 0.67
Fold 3 0.90 2.11
Fold 4 0.98 0.67
Fold 5 0.95 1.23

Mean 0.96 1.17

Table 4
The densities (g/cm3) and chemical compositions (mol%) of MoO3 −Bi2O3 −B2O3 glass
system for validation.

Sample MoO3 (%) Bi2O3 (%) B2O3 (%) Density

S1 20 30 50 4.807
S2 20 35 45 5.151
S3 20 40 40 5.559
S4 20 45 35 5.807

features and the MAC values, making it a reliable tool for mass atten-
uation coefficient predictions in diverse glass compositions. Neverthe-
less, further analysis and improvements with more data and including
other physical properties could be considered to reduce the RMSE and
enhance the model’s overall performance.

4. Conclusion

In conclusion, a dataset comprising 650 glass mass attenuation coef-
ficients was employed to construct an artificial neural network for the
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calculation of MAC values of glasses. The data underwent a k-fold cross-
validation process to assess the model’s performance, yielding 𝑅2 scores
ranging from 0.90 to 0.99 for the testing folds. Moreover, to verify the
model’s generalization capability, our model was tested on 100 MAC
values of new glasses, achieving excellent prediction performance with
an 𝑅2 score of 0.87. Which demonstrates the reliability of artificial
neural networks as a tool for MAC calculation.

Incorporating ANN into the estimation of the MAC of different glass
systems has indeed unveiled new avenues for fast and effective glass
evaluation. The predictive abilities of ANN position it as an essential
tool for future radiation shielding studies. Furthermore, there is still
more work to be done in this domain, such as exploring other machine
learning techniques, gathering additional data, and incorporating other
covariates to enhance prediction performance. By continually advanc-
ing in these areas, researchers can further improve their understanding
of the radiation shielding properties of materials.
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