• Title/Summary/Keyword: System modelling

Search Result 1,403, Processing Time 0.027 seconds

Influence of the Parasitic Inductor Resistance on Controller Design of Boost Converter for Renewable Energy System including an Energy Storage (에너지 저장장치를 포함하는 신재생에너지원용 부스트 컨버터의 인덕터 기생저항에 따른 제어기 설계 영향 분석)

  • Park, Sun-Jae;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.511-520
    • /
    • 2011
  • Nowadays, industry of smart grid is important for practical use of the renewable energy. In this situation, it is important to use the energy storage to make more stable and efficient renewable energy sources. The power conditioning systems consist in a boost converter which makes renewable energy source connected with the grid-connected inverter and the charger/discharger which takes the energy transfer between the boost converter and an energy storage. The effects on the controller design of each converter must be investigated to avoid the instability of the entire system. small-signal modelling of the boost converter and charger/discharger have been done and a controller design example is also presented. In this paper, effects on the controller design of the boost converter and the charger/discharger are investigated according to the existence of the parasitic resistance of the boost converter. In conclusion, the parasitic resistance of the inductor should be considered from the aspect of both the frequency domain analysis and time domain simulation using both MATLAB and PSIM.

Estimation of bearing error of line array sonar system caused by bottom bounced path (해저면 반사신호의 선 배열 소나 방위 오차 해석)

  • Oh, Raegeun;Gu, Bon-Sung;Kim, Sunhyo;Song, Taek-Lyul;Choi, Jee Woong;Son, Su-Uk;Kim, Won-Ki;Bae, Ho Seuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.412-421
    • /
    • 2018
  • The Line array sonar consisting of several hydrophones increases array gain and improves the performance for detecting the direction of the target compared to single hydrophone. However, line array sonar produces the bearing error that makes it difficult to determine the bearing of incoming source signal due to the relation between bearing angle of target and vertical angle of multipath signals. Vertical angles of multipath are varied with the geometry of receiver and target and various underwater environments, therefore it is necessary to consider the bearing error to estimate accurately the bearing of the target. In this study, acoustic modelling was performed to understand the effect of multipath signals on the target signal. The errors of bearing angle estimated from the bottom bounced signals are calculated with several environment. In addition, the expected bearing line, as a function of source-receiver range, compensated for the bearing error is predicted from the estimated bearing angle.

Spatiotemporal chronographical modeling of procurement and material flow for building projects

  • Francis, Adel;Miresco, Edmond;Le Meur, Erwan
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.119-139
    • /
    • 2019
  • Planning and management building projects should tackle the coordination of works and the management of limited spaces, traffic and supplies. Activities cannot be performed without the resources available and resources cannot be used beyond the capacity of workplaces. Otherwise, workspace congestion will negatively affect the flow of works. Better on-site management allows for substantial productivity improvements and cost savings. The procurement system should be able to manage a wider variety of materials and products of the required quality in order to have less stock, in less time, using less space, with less investment and avoiding multiple storage stations. The objective of this paper is to demonstrate the advantages of using the Chronographic modeling, by combining spatiotemporal technical scheduling with the 4D simulations, the Last Planner System and the Takt-time when modeling the construction of building projects. This paper work toward the aforementioned goal by examining the impact that material flow has on site occupancy. The proposed spatiotemporal model promotes efficient site use, defines optimal site-occupancy and workforce-rotation rates, minimizes intermediate stocks, and ensures a suitable procurement process. This paper study the material flow on the site and consider horizontal and vertical paths, traffic flows and appropriate means of transportation to ensure fluidity and safety. This paper contributes to the existing body of knowledge by linking execution and supply to the spatial and temporal aspects. The methodology compare the performance and procurement processes for the proposed Chronographic model with the Gantt-Precedence diagram. Two examples are presented to demonstrate the benefits of the proposed model and to validate the related concepts. This validation is designed to test the model's graphical ability to simulate construction and procurement.

Development of the Agro-Industrial Complex for Improving the Economic Security of the State

  • Petrunenko, Iaroslav;Pohrishcuk, Borys;Abramova, Maryna;Vlasenko, Yurii;Halkin, Vasyl
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.191-197
    • /
    • 2021
  • Ensuring the economic security of agro-industrial complexes of Ukrainian regions has become a top-priority task of state regional policy, as their stable functioning is an essential element of economic security of the whole country. It is overcoming threats to the development of the agro-industrial complex that ensures its further effective functioning and has a significant impact on the economic security of our state. Methods: logical method; methods of system analysis; synthesis; economic and statistical method; method of expert assessment; SWOT analysis; economic and mathematical modelling and planning. Results. Characteristic features of economic security have been given. The essence and significance of the agro-industrial complex in improving the economic security of the state have been determined. It has been noted that in recent years, the agro-industrial complex, which acts as a driver of the domestic economy and has a direct impact on the development of the country, has been growing (in 2019 the cereal and legume harvest exceeded 75 million tons, 20,269 thousand tons of potatoes were dug, more than 15 million tons of sunflower, 9,688 thousand tons of vegetables and 2,119 thousand tons of fruits and berries were harvested, meat and egg production increased by 137.5 thousand tons (or 5.8%) and 545.5 million pieces (or 3.4%), respectively, the number of employed population in agriculture increased by 139.8 thousand people (or 4.9%), the labour productivity in crop production increased by UAH 294.4 thousand (or 44.6%), in livestock production - by UAH 311.3 thousand (or 61.8%)). Based on the system of production and economic indicators, the analysis of the state of the agro-industrial complex has been carried out. Taking into account the results of the obtained data and using SWOT-analysis, the major threats to the development of the agro-industrial complex have been identified. Ways of overcoming threats enhancing the economic security of Ukraine have been proposed.

Analytic Hierarchy Process Modelling of Location Competitiveness for a Regional Logistics Distribution Center Serving Northeast Asia

  • Kim, Si-Hyun;Lee, Kwang-Ho;Kang, Dal-Won
    • Journal of Korea Trade
    • /
    • v.24 no.3
    • /
    • pp.20-36
    • /
    • 2020
  • Purpose - As the global product network expands through both internationalization and diversification of the multimodal transportation system, corporate strategies have shifted to emphasize the importance of a high value-added international logistics system. To guide policies and strategies to attract relevant industries, this study aims to analyze the location competitiveness of regional logistics distribution center to serve Northeast Asia. Design/methodology - Multi-criteria techniques are considered to offer a promising framework for evaluating decision-making factors. This paper employed an analytic hierarchy process to analyze the hierarchal structure of determinants for selecting the location of a regional logistics distribution center. Adopting both qualitative and quantitative evaluations, this study suggest political implications for a regional logistics distribution center development, such as the direction of political support, service differentiation and infrastructure development. Findings - This study developed a location competitiveness evaluation model, based on the case study of the major port-cities in Northeast Asia. Evaluation model incorporates five factors underpinning 17 components extracted using factor analysis. The results revealed that the logistics factor is the most significant factor for evaluating the competitiveness of a regional logistics distribution center. The remaining factors were market, costs, and services environment. Comparing qualitative and quantitative evaluations, results provide useful insights for a regional logistics distribution center development in Northeast Asia. Originality/value - This study revealed differences between qualitative and quantitative evaluations. The finding implies that prior works on evaluation models of competitiveness has not successfully measured the gap between quantitative data and expert' evaluations. To overcome this limitation, this paper considered both actual data such as actual distance, cost, the number of companies located, and expert opinions.

Assessment of RELAP5/MOD2 with LOFT L2-5 LBLOCA Test (LOFT L2-5 대형 냉각제상실사고 모사실험에 대한 RELAP5/ MOD2 코드 평가)

  • Bang, Y.S.;Lee, S.Y.;Kim, H.J.;Kim, S.H.
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.259-266
    • /
    • 1989
  • An improved version of RELAP5/MOD2 Cycle 36.04 code is assessed for LOFI LBLOCA Test L2-5. Minor modifications to the original version have been done to avoic reflood related errors. Based on the modified version, one base case and two cases for sensitivity study on downcomer and core channel modelling are calculated. The calculation results are compared with the experimental data for primary system pressure, break mass How rate and cladding temperature at hot spot According to the comparison, it is found that the hydraulic system behaviors are well predicted, excessive core cooling exist in blowdown phase for a single core channel and a combined downcomer case, and a better result can be obtained for a two core channel case.

  • PDF

Evolution of Particle Crushing and Shear Behavior with Respect to Particle Shape Using PFC (PFC를 이용한 입자 형상에 따른 입자 파쇄 및 전단거동 전개)

  • Jo, Seon-Ah;Cho, Gye-Chun;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.41-53
    • /
    • 2009
  • In order to analyze the influence of particle shape on evolution of particle crushing and characteristic of shear behavior of granular soil, direct shear test was simulated by using DEM (Discrete Element Method). Six particle shapes were generated by clump and cluster model built in PFC (Particle Flow Code). The results of direct shear test for six particle shapes were compared and analyzed with those for circular particle shape. The results of numerical tests showed a good agreement with those of experimental tests, thus the appropriateness of numerical modelling set in this study was proved. As for particle shape, more angular and rougher particle induced larger internal friction angle and more particle crushing than relatively round and smooth particle. When particles were crushed, crushing was concentrated on the shear band adjacent to the shear plane. Finally, it can be concluded that the numerical models suggested in this study can be used extensively for other studies concerning the shear behavior of granular soil including soil crushing.

Modelling Water Loss Control Interventions in Urban Water System from a Water-Energy-Environment Nexus Perspective (물-에너지-환경 넥서스 관점의 도시 물순환 시스템 내 물 손실 관리 방안 모델링)

  • Choi, Seo Hyung;Shin, Eunher
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.32-32
    • /
    • 2021
  • 넥서스는 물, 에너지, 식량, 토지, 기후 및 환경 등의 부문 간 연관성과 상호의존성을 나타내며, 이러한 넥서스 개념은 최근에 학계와 정책결정자들에게 많은 관심을 받고 있다. 더 나아가 넥서스 관점의 도입으로 단일 부문별로 자원을 관리하는 기존의 정책 결정 체계의 한계를 극복하고, 관련 있는 부문 간의 시너지와 트레이드오프를 고려한 지속가능한 발전을 위한 의사 결정이 가능하게 되었다. 일반적으로 취수-도수-정수처리-송수-분배·급수-물이용-하수집수-하수처리-물재이용으로 구성되는 도시 물순환 시스템에서 공급과정에서 발생되는 물손실 관리를 위한 전략 및 프로그램은 물부문 만에서 평가를 통해 수립되고 있다. 본 연구에서는 시스템 다이나믹스(System Dynamics)를 적용하여 물, 에너지 및 환경 부문을 동시에 고려한 도시 물순환 시스템 모델을 개발하여, 넥서스 관점에서의 합리적인 도시 물손실 관리 방안을 도출하고자 하였다. 그리고 모델 내 부문 간 자원의 사용량 및 이동량의 정량화를 위해 물, 에너지, 환경 지표로 각각 물발자국(Water Footprint), 총 에너지 사용량(Total Energy Use) 및 탄소발자국(Carbon Footprint)이 적용되었다. 개발된 모델을 3개의 도시 에너지 인텐시티 현황(낮음, 보통, 높음)과 4개의 물손실 현황(낮은 물손실, 높은 물손실&낮은 명목손실비, 높은 물손실&보통 명목손실비, 높은 물손실&높은 명목손실비)을 고려한 12개의 시나리오에 적용하여 분석하였다. 그 결과 기존의 경제적인 측면 중심의 의사결정 과정에서는 명목손실이 물손실 관리 전략 수립 및 적용의 우선순위였으나, 넥서스 관점에서는 실손실 부분의 개선이 중요함을 알 수 있었다. 또한, 도시의 단위 물공급 에너지 인텐시티가 자원 사용 및 이동에 큰 영향을 미치는 것으로 분석되어서, 넥서스 관점의 의사결정시 사전적으로 분석해야 하는 중요 항목인 것으로 도출되었다. 이와 같은 범용적이고 포괄적인 도시 물순환 물-에너지-환경 넥서스 모델을 통해, 지속가능하고, 체계적이며, 구체적이고, 실현가능한 넥서스관점의 물손실 관리가 가능할 것으로 판단된다.

  • PDF

Total Management System for Earth Retaining Structures Using Observational Method (지반굴착 흙막이공의 정보화시공 종합관리 시스템)

  • 오정환;조철현;김기웅;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.51-64
    • /
    • 2002
  • Observational results of ground movement during the construction were very different from those predicted during the analysis of design step because of the uncertainty of the numerical analysis modelling, the soil parameter, and the condition of a construction field, etc., however accurately numerical analysis method was applied for prediction of ground movement per the excavation step. Therefore, the management system through the construction field measurement should be achieved for grasping the situation during the excavation. Until now, the measurement system restricted by 'Absolute Value Management system'analyzing only the stability of present step has been executed. So, it was difficult to expect the prediction of ground movement fur the next excavation step. In this situation, this study developed 'The Management system TOMAS-EXCAV'consisted of 'Absolute value management system'analyzing the stability of present step and 'Prediction management system'expecting the ground movement of next excavation step and analyzing the stability of next excavation step by 'Back Analysis'. TOMAS-EXCAV could be applied to all the uncertainty of earth retaining structures analysis by connecting 'Forward analysis program'and 'Back analysis program'and optimizing the main design variables using SQP-MMFD optimization method through measurement results. The applicability of TOMAS-EXCAV was confirmed by back analysis selecting two earth retains construction fields.

A CFD Modeling of Heat Generation and Charge-Discharge Behavior of a Li-ion Secondary Battery (Li-ion 이차전지의 충방전 시 발열 및 충방전 특성의 CFD 모델링)

  • Kang, Hyeji;Park, Hongbeom;Han, Kyoungho;Yoon, Do Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.114-121
    • /
    • 2016
  • This study investigates a CFD modeling of the charge-discharge behavior due to heat generation during charge-discharge cycles of a Li-ion secondary battery(LIB). Present LIB system adopted a current-density equation, heat and mass transfer governing equations upon the 1-dimensional system to the thickness direction for the rectangular pouch configuration. According to the 3-kinds of the charge-discharge current densities of 1C($17.5A/m^2$), 3C($52.5A/m^2$) and 5C($87.5A/m^2$) subject to a 3 V of cut-off voltage, a constant-temperature system at 298 K and three different heat generating systems were analyzed with comparison. Battery capacity decreases with increment of charge-discharge densities not only at the constant-temperature system but also at the heat-generating system. The time for charge-discharge cycles increases at the heat-generating system compare to the constant-temperature system. These trends are considered that the increase of temperature due to heat generation causes the decrement of equilibrium potential of electrodes and the increment of diffusivity of Li ions. Furthermore, cooling effects were discussed in order to control the influence of heat generation due to charge-discharge behavior of a Li-ion secondary battery.