• 제목/요약/키워드: System management

검색결과 39,613건 처리시간 0.076초

간호개념에 대한 기초조사 (The Empirical Exploration of the Conception on Nursing)

  • 백혜자
    • 대한간호학회지
    • /
    • 제11권1호
    • /
    • pp.65-87
    • /
    • 1981
  • The study is aimed at exploring concept held by clinical nurses of nursing. The data were collected from 225 nurses conviniently selected from the population of nurses working in Kang Won province. Findings include. 1) Nurse's Qualification. The respondents view that specialized knowledge is more important qualification of the nurse. Than warm personality. Specifically, 92.9% of the respondents indicated specialized knowledge as the most important qualification while only 43.1% indicated warm personality. 2) On Nursing Profession. The respondents view that nursing profession as health service oriented rather than independent profession specifically. This suggests that nursing profession is not consistentic present health care delivery system nor support nurses working independently. 3) On Clients of Nursing Care The respondents include patients, family and the community residents in the category of nursing care. Specifically, 92.0% of the respondents view that patient is the client, while only 67.1% of nursing student and 74.7% of herself. This indicates the lack of the nurse's recognition toward their clients. 4) On the Priority of Nursing care. Most of the respondents view the clients physical psychological respects as important component of nursing care but not the spiritual ones. Specially, 96.0% of the respondents indicated the physical respects, 93% psychological ones, while 64.1% indicated the spiritual ones. This means the lack of comprehensive conception on nursing aimension. 5) On Nursing Care. 91.6% of the respondents indicated that nursing care is the activity decreasing pain or helping to recover illness, while only 66.2% indicated earring out the physicians medical orders. 6) On Purpose of Nursing Care. 89.8% of the respondents indicated preventing illness and than 76.6% of them decreasing 1;ai of clients. On the other hand, maintaining health has the lowest selection at the degree of 13.8%. This means the lack of nurses' recognition for maintaining health as the most important point. 7) On Knowledge Needed in Nursing Care. Most of the respondents view that the knowledge faced with the spot of nursing care is needed. Specially, 81.3% of the respondents indicated simple curing method and 75.1%, 73.3%, 71.6% each indicated child nursing, maternal nursing and controlling for the communicable disease. On the other hand, knowledge w hick has been neglected in the specialized courses of nursing education, that is, thinking line among com-w unity members, overcoming style against between stress and personal relation in each home, and administration, management have a low selection at the depree of 48.9%,41.875 and 41.3%. 8) On Nursing Idea. The highest degree of selection is that they know themselves rightly, (The mean score measuring distribution was 4.205/5) In the lowest degree,3.016/5 is that devotion is the essential element of nursing, 2.860/5 the religious problems that human beings can not settle, such as a fatal ones, 2,810/5 the nursing profession is worth trying in one's life. This means that the peculiarly essential ideas on the professional sense of value. 9) On Nursing Services. The mean score measuring distribution for the nursing services showed that the inserting of machine air way is 2.132/5, the technique and knowledge for surviving heart-lung resuscitating is 2.892/s, and the preventing air pollution 3.021/5. Specially, 41.1% of the respondents indicated the lack of the replied ratio. 10) On Nurses' Qualifications. The respondents were selected five items as the most important qualifications. Specially, 17.4% of the respondents indicated specialized knowledge, 15.3% the nurses' health, 10.6% satisfaction for nursing profession, 9.8% the experience need, 9.2% comprehension and cooperation, while warm personality as nursing qualifications have a tendency of being lighted. 11) On the Priority of Nursing Care The respondents were selected three items as the most important component. Most of the respondents view the client's physical, spiritual: economic points as important components of nursing care. They showed each 36.8%, 27.6%, 13.8% while educational ones showed 1.8%. 12) On Purpose of Nursing Care. The respondents were selected four items as the most important purpose. Specially,29.3% of the respondents indicated curing illness for clients, 21.3% preventing illness for client 17.4% decreasing pain, 15.3% surviving. 13) On the Analysis of Important Nursing Care Ranging from 5 point to 25 point, the nurses' qualification are concentrated at the degree of 95.1%. Ranging from 3 point to 25, the priorities of nursing care are concentrated at the degree of 96.4%. Ranging from 4 point to 16, the purpose of nursing care is concentrated at the degree of 84.0%. 14) The Analysis, of General Characteristics and Facts of Nursing Concept. The correlation between the educational high level and nursing care showed significance. (P < 0.0262). The correction between the educational low level and purpose of nursing care showed significance. (P < 0.002) The correlation between nurses' working yeras and the degree of importance for the purpose of nursing care showed significance (P < 0.0155) Specially, the most affirmative answers were showed from two years to four ones. 15) On Nunes' qualification and its Degree of Importance The correlation between nurses' qualification and its degree of importance showed significance. (r = 0.2172, p< 0.001) 0.005) B. General characteristics of the subjects The mean age of the subject was 39 ; with 38.6% with in the age range of 20-29 ; 52.6% were male; 57.9% were Schizophrenia; 35.1% were graduated from high school or high school dropouts; 56.l% were not have any religion; 52.6% were unmarried; 47.4% were first admission; 91.2% were involuntary admission patients. C. Measurement of anxiety variables. 1. Measurement tools of affective anxiety in this study demonstrated high reliability (.854). 2. Measurement tools of somatic anxiety in this study demonstrated high reliability (.920). D. Relationship between the anxiety variables and the general characteristics. 1. Relationship between affective anxiety and general characteristics. 1) The level of female patients were higher than that of the male patient (t = 5.41, p < 0.05). 2) Frequencies of admission were related to affective anxiety, so in the first admission the anxiety level was the highest. (F = 5.50, p < 0.005). 2, Relationship between somatic anxiety and general characteristics. 1) The age range of 30-39 was found to have the highest level of the somatic anxiety. (F = 3.95, p < 0.005). 2) Frequencies of admission were related to the somatic anxiety, so .in first admission the anxiety level was the highest. (F = 9.12, p < 0.005) 0. Analysis of significant anxiety symptoms for nursing intervention. 1. Seven items such as dizziness, mental integration, sweating, restlessness, anxiousness, urinary frequency and insomnia, init. accounted for 96% of the variation within the first 24 hours after admission. 2. Seven items such as fear, paresthesias, restlessness, sweating insomnia, init., tremors and body aches and pains accounted for 84% of the variation on the 10th day after admission.

  • PDF

중학교 가정교과에 대한 학부모의 인식 및 요구도 (Requirement and Perception of Parents on the Subject of Home Economics in Middle School)

  • 신효식;박미숙
    • 한국가정과교육학회지
    • /
    • 제18권3호
    • /
    • pp.1-22
    • /
    • 2006
  • 본 연구는 중학교 가정교과를 이수한 고등학생 학부모들을 대상으로 가정교과에 대한 인식 및 요구도를 조사하여 가정교과의 바람직한 운영 방안 모색의 기초자료를 제공하는 데에 목적이 있다. 본 연구에서 얻어진 결과를 요약하면 다음과 같다. 1. 가정교과의 교육목표는 건전한 생활 이념과 올바른 인간 형성에 관한 것으로 남녀 학생이 같이 배운다. 23.9%와 여자, 남자가 배워야할 교양과 지식을 배운다. 27.8%가 높게 나타났고, 가정 생활 향상을 위한 과학적 지식과 원리를 배운다라는 목표에 대해서 15.7%로 가장 낮게 나타났다. 2. 가정교과의 성격에 대한 인식도는 실생활과 관련성 인식도 3.84, 내용의 현실성 3.44로 나타났고, 편제에 대해서는 가정영역 시수의 적절성 2.31, 교육내용의 적합성 수준 3.38이었으며, 지도내용에 대해서는 활동을 통한 실천성 3.42, 생활에 대한 적용성 3.65, 흥미와 관심도 3.25, 적성 및 능력 개발 3.19 등이었다. 특히 시수의 적절성 인식이 가장 낮게 나타나 시수의 증가를 바라는 것으로 해석된다. 3. 가정교과의 내용에서 강화하여야 할 단원은 [가족] 4.38이 가장 높게 나타났고 [생활자원 환경관리 소비생활] 4.17, [식생활] 4.06, [주거생활] 3.79, [의생활] 3.64 순이었다. 실습의 문제점으로는 시간 부족 3.90, 시설 설비부족 3.89, 비용의 부담 3.48, 학생들의 흥미도와 실습능력의 부족 3.15로 나타났고, 교사의 지도 능력 부족도 2.83 으로 중간보다 높았다. 그리고, 가정교과 내용이 개정되어야 할 영역은 [가족] 4.18, [생활자원 환경관리 소비생활] 4.02, [식생활] 3.90, [주거생활] 3.78, [의생활] 3.66 순이었다. 4. 1학년 가정교과 내용의 요구도 평균은 3.70-4.11 범위이며 전체 평균 4.01로 매우 높게 나타났다. 학부모 전체의 중단원 요구도는 [우리들의 성장발달]이 4.11로 가장 높았고, [건강한 가족] 4.10, [성과 이성교제] 4.09, [청소년의 영양]과 [청소년의 식사] 4.04 순으로 매우 필요하다고 나타났으며 [조리의 기초와 실제]는 3.70으로 가장 낮았다. 이 중 여학생의 학부모는 [성과 이성교제]가 4.05로 가장 높게 나타났고, 남학생 학부모는 [건강한 가족] 4.24로 가장 높은 특성을 보였다. 5. 2학년 가정교과 내용의 요구도 평균은 3.12-4.09 범위이며 전체 평균 3.56으로 높게 나타났다. 학부모 전체의 중단원 요구도는 [청소년과 소비 생활]이 4.09로 가장 높았으며 [청소년의 일과 시간] 3.84, [자원과 환경] 3.68 순이었으며 [옷 만들기와 재활용]은 3.12로 가장 낮았다. 이 중 여학생 학부모는 [청소년과 소비 생활]이 3.96으로 가장 높게 나타났고, 남학생 학부모는 [청소년과 소비 생활]이 4.22로 가장 높은 특성을 나타냈다. 6. 3학년 가정교과 내용의 요구도 평균은 3.65-4.16의 범위이며 평균 3.76으로 약간 높게 나타났다. 학부모 전체의 중단원 요구도는 [진로의 선택과 직업 윤리] 4.16으로 가장 높게 나타났으며 [실내 환경과 설비] 3.89, [생활 공간의 활용] 3.72, [상차림과 식사 예절] 3.71 순으로 나타났으며, [식사 준비와 평가]는 3.53으로 가장 낮았다. 이 중 여학생 학부모는 [진로의 선택과 직업윤리]가 4.06으로 가장 높았고, 남학생 학부모는 [진로의 선택과 직업 윤리] 4.26으로 가장 높은 특성을 나타냈다. 본 연구 결과로 가정교과의 시수를 증가시켜야 하고 실험 시설의 확충이 필요하다는 것을 알 수 있었다. 또한 교사의 연수를 확대 실시하여 교육의 질을 높이고, 교과의 전문성을 가진 기술 및 가정교사가 Team Teaching을 하는 수업 방법의 도입 및 정착이 요구되며 교과내용에서는 [가족]과, [소비 생활], [진로교육]의 내용이 강조되는 방향으로 개정되어야 할 것이다.

  • PDF

감정예측모형의 성과개선을 위한 Support Vector Regression 응용 (Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model)

  • 김성진;유은정;정민규;김재경;안현철
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.185-202
    • /
    • 2012
  • 오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.

지식 공유의 파레토 비율 및 불평등 정도와 가상 지식 협업: 위키피디아 행위 데이터 분석 (Pareto Ratio and Inequality Level of Knowledge Sharing in Virtual Knowledge Collaboration: Analysis of Behaviors on Wikipedia)

  • 박현정;신경식
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.19-43
    • /
    • 2014
  • 전체 결과의 80%가 전체 원인의 20%에 의해 일어난다는 파레토 법칙(Pareto principle)은 상위 20%의 핵심 고객에 대한 우선적인 마케팅을 비롯하여 기업 경영의 많은 부분에서 적용되어 왔다. 파레토 법칙과는 대조적으로, 80%의 사소한 다수가 20%의 핵심적인 소수보다 우월한 가치를 창출한다는 롱테일 법칙(Long Tail theory)은 ICT(Information and Communication Technology)의 발전과 함께 새로운 경영 패러다임으로 주목 받아오고 있다. 본 연구의 목적은 경영 현장에서 양대 흐름을 형성해온 이러한 법칙들이 변화무쌍한 글로벌 가상화 환경에서 기업의 핵심적인 성공 요인이라고 할 수 있는 가상 지식 협업에는 어떻게 관련되는지를 규명하는 것이다. 이를 위해, 대표적인 가상 지식 협업 커뮤니티인 위키피디아에서 품질 최상위 등급인 피쳐드 아티클(Featured Article) 레벨로 승급된 2,978개의 아티클에 대한 협업 행위를 분석하였다. 즉, 각 아티클 그룹에서 편집 횟수 기준 상위 20%에 속하는 참여자들의 총 편집 횟수가 전체 편집 횟수에서 차지하는 비율인 파레토 비율(Pareto ratio)이 지식 협업 효율성과 어떤 관계를 가지고 있는지를 도출하였다. 그리고, 이러한 연구를 편집 참여를 통한 지식 공유에 대한 전체적인 불평등 정도를 나타내는 지니 계수(Gini coefficient)의 영향 및 그룹의 작업 특성을 반영하도록 확장하였다. 결과적으로, 지식 공유의 파레토 비율과 지니 계수가 증가하면 지식 협업 효율성도 높아지지만, 이러한 변수들이 일정 수준 이상으로 증가하면 오히려 지식 협업 효율성이 낮아지는 역 U자(inverted U-shaped) 관계가 있음을 확인하였다. 그리고, 이러한 관계는 인지적 노력을 상대적으로 더 많이 요구하는 학문적인 특성의 작업에서 더 민감하게 작용하는 것으로 보인다.

인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로 (Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China)

  • 이재원;오상진
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.71-90
    • /
    • 2020
  • 최근 전 세계 보험업계에도 기계학습, 자연어 처리, 딥러닝 등의 인공지능 기술 활용을 통한 디지털 전환이 급속도로 확산하고 있다. 이에 따라 인공지능 기술을 기반으로 한 인슈어테크와 플랫폼 비즈니스 성공을 이룬 해외 보험사들도 증가하고 있다. 대표적으로 중국 최대 민영기업인 평안보험그룹은 '금융과 기술', '금융과 생태계'를 기업의 핵심 키워드로 내세우며 끊임없는 혁신에 도전한 결과, 인슈어테크와 디지털플랫폼 분야에서 괄목할만한 성과를 보이며 중국의 글로벌 4차 산업혁명을 선도하고 있다. 이에 본 연구는 평안보험그룹 인슈어테크와 플랫폼 비즈니스 활동을 ser-M 분석 모델을 통해 분석하여 국내 보험사들의 인공지능 기술기반 비즈니스 활성화를 위한 전략적 시사점을 제공하고자 했다. ser-M 분석 모델은 기업의 경영전략을 주체, 환경, 자원, 메커니즘 관점에서 통합적으로 해석이 가능한 프레임으로, 최고경영자의 비전과 리더십, 기업의 역사적 환경, 다양한 자원 활용, 독특한 메커니즘 관계가 통합적으로 해석되도록 연구하였다. 사례분석 결과, 평안보험은 안면·음성·표정 인식 등 핵심 인공지능 기술을 활용하여 세일즈, 보험인수, 보험금 청구, 대출 서비스 등 업무 전 영역을 디지털로 혁신함으로써 경비 절감과 고객서비스 발전을 이루었다. 또한 '중국 내 온라인 데이터'와 '회사가 축적한 방대한 오프라인 데이터 및 통찰력'을 인공지능, 빅데이터 분석 등 신기술과 결합하여 금융 서비스와 디지털 서비스 사업이 통합된 디지털 플랫폼을 구축하였다. 이러한 평안보험그룹의 성공 배경을 ser-M 관점에서 분석해 보면, 창업자 마밍즈 회장은 4차 산업혁명 시대의 디지털 기술발전, 시장경쟁 및 인구 구조의 변화를 빠르게 포착하여 새로운 비전을 수립하고 디지털 기술중시의 민첩한 리더십을 발휘하였다. 환경변화에 대응한 창업자 주도의 강력한 리더십을 바탕으로 인공지능 기술 투자, 우수 전문인력 확보, 빅데이터 역량 강화 등 내부자원을 혁신하고, 외부 흡수역량의 결합, 다양한 업종 간의 전략적 제휴를 통해 인슈어테크와 플랫폼 비즈니스를 성공적으로 끌어냈다. 이와 같은 성공사례 분석을 통하여 인슈어테크와 디지털플랫폼 도입을 본격 준비하고 있는 국내 보험사들에게 디지털 시대에 필요한 경영 전략과 리더십에 대한 시사점을 줄 수 있다.

양평 벽계리에 설정된 곡중경(曲中景)의 지향성과 화서(華西) 이항로(李恒老)의 벽원(蘗園) 경영 (Studies on the Directivity of Gokjungkyeong(Kyung Overlapped with Gok) which was specified in Byeokgye-ri, Yangpyeong-gun and the Hwaseo Lee, Hang-ro's Management in Byeokwon Garden)

  • 정우진;노재현
    • 한국전통조경학회지
    • /
    • 제34권3호
    • /
    • pp.78-97
    • /
    • 2016
  • 본 연구는 문헌 및 현장조사를 바탕으로 양평군 서종면 벽계천에 형성된 수회구곡과 벽계구곡 그리고 노산팔경의 설정 경위를 검토하고, 화서 당대에 향유되고 경영된 명승 벽계의 경관실체를 구명하는 것을 목적으로 한다. 연구의 결과는 다음과 같다. 첫째, 화서 이항로 이후에 설정된 벽계구곡과 노산팔경은 화서의 행적과 관련된 주요 경처를 모은 '현대기(現代期)'의 집경으로 판명되었다. 벽계구곡이 수회구곡의 집경요소와 많은 부분 중복되는 점이나, 수회구곡의 종점부터 노산팔경의 영역이 시작되는 작위적 구성은 수입리 벽계와 노문리 벽계 사이의 장소대립 및 장소패권의 양상을 엿보게 한다. 이는 화서 이전 벽계 향유집단의 오랜 역사성과 화서의 이미지로 밀착된 영역성이 상충되어 나타난 결과로 판단된다. 둘째, 벽계구곡은 노산팔경의 영역을 확대함과 동시에 수입리의 경승을 선별해 재구성한 2차적 공간체계였다. 벽계구곡의 설정 이후 벽계천 전체 권역에 대한 장소 정체성이 효과적으로 확보되었는데, '청서구장(淸西舊莊)'과 '수회구곡(水回九曲)' 바위글씨 등 화서 이전의 명소가 철저히 배제되는 등 '화서 지향적' 공간 성격을 갖고 있었다. 그 결과 노문리뿐만 아니라 수입리에 이르는 벽계천 전체 영역은 화서의 문화경관으로 재편되었다. 셋째, '주자-율곡-우암-화서'로 이어지는 도통 강화의 일환으로 설정된 화서학파의 구곡 설정은 벽계구곡 탄생의 계기이자 외적 동인이 되었다. 즉, 벽계구곡과 노산팔경은 화서학의 중심이 옥계동으로 건너간 것에 대한 반동, 무이구곡 고산구곡과 옥계구곡의 사이의 결손된 도체공간의 창출 그리고 후손과 지역민에 의한 화서 선양작업 등 일련의 전략적 지향성과 흐름을 같이 한다. 넷째, 화서의 주리론적 관점에서 살펴보면, 그가 경영한 벽원(蘗園)의 모든 경역은 '실제로 존재하는 산수경치의 물상[氣]'을 통해 리(理)의 내재함과 심미적 자아의 허령(虛靈)한 경계를 체험하는 공간작법으로 존재했음을 알 수 있다. 이러한 점은 벽계구곡이나 노산팔경을 화서와 연관된 영역으로 조명하기 이전에, 벽원 고유의 경관성을 규정짓고 나아가 어떤 방식으로 접근하고 향유해야 하는지를 일깨워 준다. 다섯째, 노산팔경은 벽계구곡 중 노문리 벽계 일원 중에서도, 화서가 강학하고 소요하던 여덟 곳의 경승을 담는 곡중경(曲中景)의 문화경관으로 구성되었으나 화서가 남긴 바위글씨와 시문에 의존해 집경됨으로써 벽계구곡에 비해 내적 충일성은 확보되지만 집경에 따른 개념적 타당성에는 다소의 의문이 남는다.

데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발 (Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining)

  • 윤승진;김수환;신경식
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.1-17
    • /
    • 2015
  • 최근, 군에서 가장 이슈가 되고 있는 문제는 기강 해이, 복무 부적응 등으로 인한 병력 사고이다. 이 같은 사고를 예방하는 데 있어 가장 중요한 것은, 사고의 요인이 될 수 있는 문제를 사전에 식별 관리하는 것이다. 이를 위해서 지휘관들은 병사들과의 면담, 생활관 순찰, 부모님과의 대화 등 나름대로의 노력을 기울이고 있기는 하지만, 지휘관 개개인의 역량에 따라 사고 징후를 식별하는 데 큰 차이가 나는 것이 현실이다. 본 연구에서는 이러한 문제점을 극복하고자 모든 지휘관들이 쉽게 획득 가능한 객관적 데이터를 활용하여 사고를 예측해 보려 한다. 최근에는 병사들의 생활지도기록부 DB화가 잘 되어있을 뿐 아니라 지휘관들이 병사들과 SNS상에서 소통하며 정보를 얻기 때문에 이를 데이터화 하여 잘 활용한다면 병사들의 사고예측 및 예방이 가능하다고 판단하였다. 본 연구는 이러한 병사의 내부데이터(생활지도기록부) 및 외부데이터(SNS)를 활용하여 그들의 관심분야를 파악하고 사고를 예측, 이를 지휘에 활용하는 데이터마이닝 문제를 다루며, 그 방법으로 토픽분석 및 의사결정나무 방법을 제안한다. 연구는 크게 두 흐름으로 진행하였다. 첫 번째는 병사들의 SNS에서 토픽을 분석하고 이를 독립변수화 하였고 두 번째는 병사들의 내부데이터에 이 토픽분석결과를 독립변수로 추가하여 의사결정나무를 수행하였다. 이 때 종속변수는 병사들의 사고유무이다. 분석결과 사고 예측 정확도가 약 92%로 뛰어난 예측력을 보였다. 본 연구를 기반으로 향후 장병들의 사고예측을 과학적으로 분석, 맞춤식으로 관리한다면 군대 내 각종 사고를 미연에 예방하는데 기여할 것으로 기대된다.

고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형 (The Audience Behavior-based Emotion Prediction Model for Personalized Service)

  • 유은정;안현철;김재경
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.73-85
    • /
    • 2013
  • 정보기술의 비약적 발전에 힘입어, 오늘날 기업들은 지금까지 축적한 고객 데이터를 기반으로 맞춤형 서비스를 제공하는 것에 많은 관심을 가지고 있다. 고객에게 소구하는 맞춤형 서비스를 효과적으로 제공하기 위해서는 우선 그 고객이 처한 상태나 상황을 정확하게 인지하는 것이 중요하다. 특히, 고객에게 서비스가 전달되는 이른바 진실의 순간에 해당 고객의 감정 상태를 정확히 인지할 수 있다면, 기업은 더 양질의 맞춤형 서비스를 제공할 수 있을 것이다. 이와 관련하여 사람의 얼굴과 행동을 이용하여 사람의 감정을 판단하고 개인화 서비스를 제공하기 위한 연구가 활발하게 이루어지고 있다. 얼굴 표정을 통해 사람의 감정을 판단하는 연구는 좀 더 미세하고 확실한 변화를 통해 정확하게 감정을 판단할 수 있지만, 장비와 환경의 제약으로 실제 환경에서 다수의 관객을 대상으로 사용하기에는 다소 어려움이 있다. 이에 본 연구에서는 Plutchik의 감정 분류 체계를 기반으로 사람들의 행동을 통해 감정을 추론해내는 모형을 개발하는 것을 목표로 한다. 본 연구는 콘텐츠에 의해 유발된 사람들의 감정적인 변화를 사람들의 행동 변화를 통해 판단하고 예측하는 모형을 개발하고, 4가지 감정 별 행동 특징을 추출하여 각 감정에 따라 최적화된 예측 모형을 구축하는 것을 목표로 한다. 모형 구축을 위해 사람들에게 적절한 감정 자극영상을 제공하고 그 신체 반응을 수집하였으며, 사람들의 신체 영역을 나누었다. 특히, 모션캡쳐 분야에서 널리 쓰이는 차영상 기법을 적용하여 사람들의 제스쳐를 추출 및 보정하였다. 이후 전처리 과정을 통해 데이터의 타임프레임 셋을 20, 30, 40 프레임의 3가지로 설정하고, 데이터를 학습용, 테스트용, 검증용으로 구분하여 인공신경망 모형을 통해 학습시키고 성과를 평가하였다. 다수의 일반인들을 대상으로 수집된 데이터를 이용하여 제안 모형을 구축하고 평가한 결과, 프레임셋에 따라 예측 성과가 변화함을 알 수 있었다. 감정 별 최적 예측 성과를 보이는 프레임을 확인할 수 있었는데, 이는 감정에 따라 감정의 표출 시간이 다르기 때문인 것으로 판단된다. 이는 행동에 기반한 제안된 감정예측모형이 감정에 따라 효과적으로 감정을 예측할 수 있으며, 실제 서비스 환경에서 사용할 수 있는 효과적인 알고리즘이 될 수 있을 것으로 기대할 수 있다.

불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델 (A Hybrid SVM Classifier for Imbalanced Data Sets)

  • 이재식;권종구
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.125-140
    • /
    • 2013
  • 어떤 클래스에 속한 레코드의 개수가 다른 클래스들에 속한 레코드의 개수보다 매우 많은 경우에, 이 데이터 집합을 '불균형 데이터 집합'이라고 한다. 데이터 분류에 사용되는 많은 기법들은 이러한 불균형 데이터에 대해서 저조한 성능을 보인다. 어떤 기법의 성능을 평가할 때에 적중률뿐만 아니라, 민감도와 특이도도 함께 측정하여야 한다. 고객의 이탈을 예측하는 문제에서 '유지' 레코드가 다수 클래스를 차지하고, '이탈' 레코드는 소수 클래스를 차지한다. 민감도는 실제로 '유지'인 레코드를 '유지'로 예측하는 비율이고, 특이도는 실제로 '이탈'인 레코드를 '이탈'로 예측하는 비율이다. 많은 데이터 마이닝 기법들이 불균형 데이터에 대해서 저조한 성능을 보이는 것은 바로 소수 클래스의 적중률인 특이도가 낮기 때문이다. 불균형 데이터 집합에 대처하는 과거 연구 중에는 소수 클래스를 Oversampling하여 균형 데이터 집합을 생성한 후에 데이터 마이닝 기법을 적용한 연구들이 있다. 이렇게 균형 데이터 집합을 생성하여 예측을 수행하면, 특이도는 다소 향상시킬 수 있으나 그 대신 민감도가 하락하게 된다. 본 연구에서는 민감도는 유지하면서 특이도를 향상시키는 모델을 개발하였다. 개발된 모델은 Support Vector Machine (SVM), 인공신경망(ANN) 그리고 의사결정나무 기법 등으로 구성된 하이브리드 모델로서, Hybrid SVM Model이라고 명명하였다. 구축과정 및 예측과정은 다음과 같다. 원래의 불균형 데이터 집합으로 SVM_I Model과 ANN_I Model을 구축한다. 불균형 데이터 집합으로부터 Oversampling을 하여 균형 데이터 집합을 생성하고, 이것으로 SVM_B Model을 구축한다. SVM_I Model은 민감도에서 우수하고, SVM_B Model은 특이도에서 우수하다. 입력 레코드에 대해서 SVM_I와 SVM_B가 동일한 예측치를 도출하면 그것을 최종 해로 결정한다. SVM_I와 SVM_B가 상이한 예측치를 도출한 레코드에 대해서는 ANN과 의사결정나무의 도움으로 판별 과정을 거쳐서 최종 해를 결정한다. 상이한 예측치를 도출한 레코드에 대해서는, ANN_I의 출력값을 입력속성으로, 실제 이탈 여부를 목표 속성으로 설정하여 의사결정나무 모델을 구축한다. 그 결과 다음과 같은 2개의 판별규칙을 얻었다. 'IF ANN_I output value < 0.285, THEN Final Solution = Retention' 그리고 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn'이다. 제시되어 있는 규칙의 Threshold 값인 0.285는 본 연구에서 사용한 데이터에 최적화되어 도출된 값이다. 본 연구에서 제시하는 것은 Hybrid SVM Model의 구조이지 특정한 Threshold 값이 아니기 때문에 이 Threshold 값은 대상 데이터에 따라서 얼마든지 변할 수 있다. Hybrid SVM Model의 성능을 UCI Machine Learning Repository에서 제공하는 Churn 데이터 집합을 사용하여 평가하였다. Hybrid SVM Model의 적중률은 91.08%로서 SVM_I Model이나 SVM_B Model의 적중률보다 높았다. Hybrid SVM Model의 민감도는 95.02%이었고, 특이도는 69.24%이었다. SVM_I Model의 민감도는 94.65%이었고, SVM_B Model의 특이도는 67.00%이었다. 그러므로 본 연구에서 개발한 Hybrid SVM Model이 SVM_I Model의 민감도 수준은 유지하면서 SVM_B Model의 특이도보다는 향상된 성능을 보였다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.