• Title/Summary/Keyword: System life-cycle

Search Result 1,943, Processing Time 0.03 seconds

Evaluation Standard of Cost-Effectiveness Analysis for Renew of Architectural Equipment in Public Building (공공건물 건축설비 갱신 계획시 비용-효율분석 평가기준에 관한 연구)

  • Jung, Soon-Sung
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.131-138
    • /
    • 2013
  • The purpose of this study is to suggest the evaluation standard of cost-effectiveness analysis for renew of architectural equipment in public building. Evaluation items of cost-effectiveness analysis for renew of architectural equipment in public building were used life cycle cost, energy consumption(ton of oil equivalent), green house gas emissions(ton of carbon dioxide) and maximum power demand. Life cycle cost is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. The social concern with green house gas and maximum power demand of architectural equipment field has been growing for the last several years.

Low Cycle Fatigue Life Assessment of Alloy 617 Weldments at 900℃ by Coffin-Manson and Strain Energy Density-Based Models

  • Rando, Tungga Dewa;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • This work aims to investigate on the low cycle fatigue life assessment, which is adopted on the strain-life relationship, or better known as the Coffin-Manson relationship, and also the strain energy density-based model. The low cycle fatigue test results of Alloy 617 weldments under $900^{\circ}C$ have been statistically estimated through the Coffin-Manson relationship according to the provided strain profile. In addition, the strain energy density-based model is proposed to represent the energy dissipated per cycle as fatigue damage parameter. Based on the results, Alloy 617 weldments followed the Coffin-Manson relationship and strain energy density-based model well, and they were compatible with the experimental data. The predicted lives based on these two proposed models were examined with the experimental data to select a proper life prediction parameter.

Management of Product Life Cycle Data for Environmental Design (환경친화적 설계를 위한 제품 전주기 데이터 관리)

  • 황오현;강무진;이화조;최병욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.115-120
    • /
    • 1997
  • Environmental Product Life Cycle Management is an activity for defining and describing the product, process or activity environmentally. Especially, the main responsibility for the environmental impact of products lies in the design phase of product. Designers cany a heavy responsibility to determine technical, economic and ecological properties of the product. So in order to help designers, structured understanding and application of treating large amount of data and infonnation should be considered. This paper presents a methodological approach for decision supporting to build Product Life Cycle Management system and show a set of database modeling. Additionally, a key issue for databases is the quality of the provided information.

  • PDF

A Study on Improving the Precision of Quantitative Prediction of Cold Forging Die Life Cycle Through Real Time Forging Load Measurement (실시간 성형하중 계측을 통한 냉간단조 금형수명 정량예측 정밀도 향상 연구)

  • Seo, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • The cold forging process induces material deformation in an enclosed space, generating a very high forging load. Therefore, it is mainly designed as a multi-stage process, and fatigue failure occurs in forging die due to cyclic load. Studies have been conducted previously to quantitatively predict the fatigue limit of cold forging dies, however, there was a limit to field application due to the large error range and the need for expert intervention. To solve this problem, we conducted a study on the introduction of a real-time forging load measurement technology and an automated system for quantitative prediction of die life cycle. As a result, it was possible to reduce the error range of the quantitative prediction of die life cycle to within ±7%, and it became possible to use the die life cycle calculation algorithm into an automated system.

Life Cycle Cost Analysis of Main Conversion System in 8200 Series Electric Locomotive (8200호대 전기기관차 주변환장치 LCC 분석)

  • Kim, Wan-il;Lee, Kye-Seung;Choi, Jong-Rok;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1830-1835
    • /
    • 2017
  • 8200 Series Electric Locomotives are mostly imported from overseas due to aging and uncertainty of source technology, and it's the maintenance cost is increasing. We are analyzed life cycle costs based on international standards such as IEC 60300-3-3 and IEC62278. The main conversion system of the 8200 series electric locomotive is closely related to vehicle operation and is one of the subsystems requiring frequent maintenance. In this paper, the life cycle cost of the main conversion unit in 8200 series electric locomotive is analyzed based on the maintenance manual. As a result of analysis, maintenance cost of GTO module and control device is relatively high, and it is confirmed that the cost increases according to the useful life.

A Life Cycle Cost Analysis in Design and Manufacturing of Production System (생산시스템의 설계/제조에서의 생애비용(LCC)에 관한 연구)

  • 함효준
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.173-183
    • /
    • 1995
  • Life cycle cost has been one of the key criteria in design or purchasing of systems, particularly in the flying weapon system. Unexpected cost increase or system breakdown during the system life can be reduced by controlling maintenance cost A system should be designed for maintainability in early stage of product life cycle. The design should be insensitive to its environmental, organizational, and human factors in the stage of customer's utilization. This paper presents LCC as a controllable variable and also suggests a new control model for LCC analysis. The estimation of maintenance cost based upon maintenance scenario, design of maintainability followed by minimizing maintainability loss function in the beginning stage of design, and increase of useful life of systems are among the factors to control LCC.

  • PDF

A Study on Life Cycle Cost on Railway Locomotive Systems

  • Egamberdiev, Bunyod;Lee, Kookchan;Lee, Jongwoo;Burnashev, Shamil
    • International Journal of Railway
    • /
    • v.9 no.1
    • /
    • pp.10-14
    • /
    • 2016
  • Life cycle cost analysis is compulsively required for the system operation. System operation costs are consisted of acquisition, operation, maintenance and so on. In the beginning of the system planning, we need to take into account of various costs following the system operating. To implement LCC, we need to analyze system life cycle to identify all costs during system life. The costs can be divided into three parts. The first part is purchasing cost, the second for operating cost and the last for disposal cost. The second operating cost can be decomposed of operating cost included labor, energy consumption cost for system running, maintenance costs to keep systems healthy, delay cost caused from maintenance and hazard cost, and so on. In this paper, we carried out for railway locomotives which operate over more 30years and which cost about 10 million USD. We decompose the life cycle of the locomotives and break down the locomotives into subsystems to require maintenance or not, and subsystems to need energy or not. We showed how to decide optimal locomotives through cost identification and system breakdown.

A Study on the Effects of ICT Infrastructure Cost on Information System Life Cycle (정보시스템 수명주기에 인프라가 미치는 영향관계에 대한 연구)

  • Moon, Heoungkeun;Kim, Jeongho;Lee, Seogjun;Park, Sungsik
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.3
    • /
    • pp.323-334
    • /
    • 2013
  • There are many studies on the project planning, project management and quality management. The cost of the new project takes only 20% of system's lifetime resource and the costs of the maintenance and infrastructure take more than 80%, so the study on the maintenance is much more important than the study on the new project. There has been many studies on the economic life cycle of the system using it's maintenance cost, but no studies on it's infrastructure cost. This paper provides how we can adapt infrastructure cost, which takes more than 40% of system's life cycle cost, to the economic life cycle of the system and its effects on the system's economic life cycle.

A Study on the Simplified Economics Evaluation Method for Selecting a Heat Source System at the Pre-design Phase (초기계획단계에서 열원시스템 선정을 위한 경제성 간이 평가법에 관한 연구)

  • Park Yool;Park Jong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1060-1067
    • /
    • 2004
  • To apply an analysis method of life cycle cost when assessing economics of equipment system, we should basically set up preconditions such as useful life, price escalation rate, interest rate, etc. as well as consider a calculation algorism of source energy and heat source system, which is a complex process for life cycle costing. For this reason, equipment designers tend to plan heat source systems, without a thorough investigation on economics of alternative systems at the pre-design phase. In this process, architectural designers should adopt a proper heat source system, which is one of the most important factors for planning an appropriate architectural design, through a discussion with equipment designers in a short time. In order to offer an evaluation method for equipment designers to analyze economics of an alternative heat source system easily at the pre-design phase, this research would define the simplified economics, evaluation method through analysis of existing papers for economics evaluation, and examine validity through comparison of simplified method values ($LCC_{EC}$) and life cycle costing values ($LCC_{15}$) for six alternative heat source systems.

Development of System and Cost Function Model for Life Cycle Cost Analysis of Bridge (교량의 생애주기비용 분석을 위한 비용함수 모델 및 시스템 개발)

  • Park Mi-Yun;Sun Jong-Wan;Eom In-Soo;Cho Hyo-Nam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.704-711
    • /
    • 2005
  • Recently Life Cycle Cost Analysis for civil infrastructures such as pavements, bridges, and dams has been emphasized However, so far, there are few systems available for life cycle cost analysis of bridges at design stage. Therefore, the objective of this paper is to develop a user-friendly life-cycle cost analysis system for LCC-effective optimal design decision making at design stage. The program is based on the proposed LCC model, formulation, analysis modules and systematic procedure that suit Korean construction conditions. It is expected that the developed system can be effectively utilized for more LCC-effective design of bridges. It is applied to an actual bridge design project in order to demonstrate its effectiveness and applicability.

  • PDF