• Title/Summary/Keyword: System impact

Search Result 7,269, Processing Time 0.038 seconds

Model-based localization and mass-estimation methodology of metallic loose parts

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Munsung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.846-855
    • /
    • 2020
  • A loose part monitoring system is used to detect unexpected loose parts in a reactor coolant system in a nuclear power plant. It is still necessary to develop a new methodology for the localization and mass estimation of loose parts owing to the high estimation error of conventional methods. In addition, model-based diagnostics recently emphasized the importance of a model describing the behavior of a mechanical system or component. The purpose of this study is to propose a new localization and mass-estimation method based on finite element analysis (FEA) and optimization technique. First, an FEA model to simulate the propagation behavior of the bending wave generated by a metal sphere impact is validated by performing an impact test and a corresponding FEA and optimization for a downsized steam-generator structure. Second, a novel methodology based on FEA and optimization technique was proposed to estimate the impact location and mass of a loose part at the same time. The usefulness of the methodology was then validated through a series of FEAs and some blind tests. A new feature vector, the cross-correlation function, was also proposed to predict the impact location and mass of a loose part, and its usefulness was then validated. It is expected that the proposed methodology can be utilized in model-based diagnostics for the estimation of impact parameters such as the mass, velocity, and impact location of a loose part. In addition, the FEA-based model can be used to optimize the sensor position to improve the collected data quality in the site of nuclear power plants.

Mechanical Behavior of Fruits under Impact Loading (과실의 충격특성에 관한 연구)

  • Hong J. H.;Myung B. S.;Choe J. S.;Kim C. S.;Kim T. W.;Chung J. H.;Park J. W.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.5 s.112
    • /
    • pp.274-279
    • /
    • 2005
  • Impact is one of the major cause of damage to fruits druing varios processes from the production on the farm to the consumer. The tissue of fruits are ruptured in a very short period time less than 10ms by impact loading. Mechanical behavior of fruits under impact loading can be analyzed better with high speed sampling data acquisition system and one of them is a digital storage oscilloscope. A impact test system was developed to test the physical properties of fruits including apple, pear, and peach which may lead to a better understanding of the physical laws. The test system consisted of a digital storage oscilloscope and simple mechanism which can apply impact force to fresh produce. Rupture force, energy, and deffrmation were measured at the five levels of drop heights from 4 to 24cm fur each internal and external tissues. Rupture forces for apple and pear were in the range of 72.9 to 87.7 N and 70.8 to 84.1 N for external and internal tissues, respectively. Rupture forces far peach external tissues were in the range of 43.4 to 65.0 N.

Vulnerability AssessmentunderClimateChange and National Water Management Strategy

  • Koontanakulvong, Sucharit;Suthinon, Pongsak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.204-204
    • /
    • 2016
  • Thailand had set the National Water Management Strategy which covered main six areas in the next 12 years, i.e., by priority: (1) water for household, (2) water for agricultural and industrial production, (3) water for flood and drought management, (4) water for quality issue, (5) water from forest conservation and soil erosion protection, (6) water resources management. However due to the climate change impact, there is a question for all strategies is whether to complete this mission under future climate change. If the impact affects our target, we have to clarify how to mitigate or to adapt with it. Vulnerability assessment was conducted under the framework of ADB's (with the parameters of exposure, sensitivity and adaptive capacity) and the assessments were classified into groups due to their different characteristic and the framework of the National Water Management Strategy, i.e., water supply (rural and urban), water for development (agriculture and others), water disasters (floods (flash, overflow), drought, water quality). The assessments identified the parameters concerned and weight factors used for each groups via expert group discussions and by using GIS mapping technology, the vulnerability maps were produced. The maps were verified with present water situation data (floods, drought, water quality). From the analysis result of this water resources management strategy, we found that 30% of all projects face the big impacts, 40% with low impact, and 30% for no impact. It is clear that water-related agencies have to carefully take care approximately 70% of future projects to meet water resources management strategy. It is recommended that additional issues should be addressed to mitigate the impact from climate risk on water resource management of the country, i.e., water resources management under new risk based on development scenarios, relationship with area-based problems, priority definition by viewpoints of risk, vulnerability (impact and occurrence probability in past and future), water management system in emergency case and water reserve system, use of information, knowledge and technology in management, network cooperation and exchange of experiences, knowledge, technique for sustainable development with mitigation and adaptation, education and communication systems in risk, new impact, and emergency-reserve system. These issues will be described and discussed.

  • PDF

Experimental Assessment of Dynamic Strength of Membrane Type LNG Carrier Insulation System (멤브레인 LNG선 방열시스템 동적강도 실험적 특성평가)

  • Lee, Jun-Hwan;Choi, Woo-Chul;Kim, Myung-Hyun;Kim, Wha-Soo;Noh, Byeong-Jae;Choe, Ick-Hung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.296-304
    • /
    • 2007
  • The objective of this paper is to investigate the dynamic strength characteristics of LNG carriers cargo containment system under impact loads experimentally. The material properties were experimentally obtained for individual components of MARK III insulation system. A series of impact tests was performed using a custom-built drop experiment facility as varying heights and weights of the drop object. Crack initiation and propagation were measured during the cyclic dry drop experiment. The quantitative relationship between impact load and crack initiation as well as the cycle number and crack propagation were reported.

Optimal Design of Passenger Airbag Door System Considering the Tearseam Failure Strength (티어심 파손 강도를 고려한 동승석 에어백 도어시스템의 최적 설계)

  • Choi, Hwanyoung;Kong, Byungseok;Park, Dongkyou
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.60-68
    • /
    • 2021
  • Invisible passenger airbag door system of hard panel types must be designed with a weakened area such that the side airbag will deploy through the instrument panel as like intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test. If the advanced airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of invisible passenger airbag (IPAB) door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. It was introduced the 'Operating Window' idea from quality engineering to design the hard panel types of IPAB door system applied to the advanced airbag for optimal deployment and head impact performance. Zigzab airbag folding and 'n' type PAB mounting bracket were selected.

Performance Analysis of an Active System for Pedestrian Protection Using Impact Analysis (충돌 해석을 이용한 능동형 보행자 보호 시스템의 성능 분석)

  • Park, Jong-Sun;Jeong, Seong-Boem;Yun, Yong-Won;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.100-107
    • /
    • 2013
  • Although automotive safety technologies have been developed steadily, the efforts for pedestrian protection still seems to be insufficient. In a car-pedestrian accident, the structures such as the engine under a hood, the lower part of a windshield and the A-pillar are the major causes of fatal pedestrian injuries. Recently, there have been several studies on the active safety system to reduce the pedestrian injuries. The safety system consists of an active hood lift system and a pedestrian airbag. In this research, the safety performance of the active hood lift system and the pedestrian airbag is investigated by using the finite element method. The finite element model of the system is set up based on the head impact test, and the impact analyses are performed. The necessity and the usefulness of the safety system are verified.

Standardization Plan for Activation of Environmental Impact Assessment based on Spatial Information (공간정보 기반 환경영향평가 활성화를 위한 표준화 방안)

  • Jang, Jung-yoon;Cho, Namwook;Lee, Moung Jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.433-446
    • /
    • 2019
  • Environmental impact assessment has been performed as preliminary assessment system in order to conserve environment value and minimize negative effect from development. Assessment based on data has been necessary to strengthen objectivity in process of Environmental impact assessment process. Furthermore extended use of spatial information in Environmental impact assessment system has been required through spatial information provided at government level and possibility connected with spatial information in Environmental impact assessment. However spatial information has not been systematically utilized in current Environmental impact assessment. Also the environmental impact assessment workers including assessment government employees, agencies of Environmental impact assessment document and review agencies lack an understanding in the concept of spatial information, so there is limit about their use to efficiently. In order to improve these limits in use of spatial information, this study suggested measures to standardize spatial information (coordinate and attribute table). To do so, based on coordinate and standards certified by the government, this study defined standard coordinates (GRS-80, central datum point, False East: 100000, False North: 200000) and established 9 default items. Lastly, the aforementioned standards were tested for actual environmental impact assessment projects. Standardization measures suggested in this study are expected to contribute to invigorate spatial information utilization in Environmental impact assessment and expand the scope of the assessment.

Life cycle impact assessment of the environmental infrastructures in operation phase: Case of an industrial waste incineration plant

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.266-276
    • /
    • 2017
  • A life cycle impact assessment was applied in an industrial waste incineration plant to evaluate the direct and indirect environmental impacts based on toxicity and non-toxicity categories. The detailed life cycle inventory of material and energy inputs and emission outputs was compiled based on the realistic data collected from a local industrial waste incineration plant, and the Korean life cycle inventory and ecoinvent database. The functional unit was the treatment of 1 tonne of industrial waste by incineration and the system boundary included the incineration plant and landfilling of ash. The result on the variation of the impact by the unit processes showed that the direct impact was decreased by 79.3, 71.6, and 90.1% for the processes in a semi dry reactor, bag filter, and wet scrubber, respectively. Considering the final impact produced from stack, the toxicity categories comprised 91.7% of the total impact. Among the toxicity impact categories, the impact in the eco-toxicity category was most significant. A separate estimation of the impact due to direct and indirect emissions showed that the direct impact was 97.7% of the total impact. The steam recovered from the waste heat of the incineration plant resulted in a negative environmental burden.

Finite element analysis of RC walls with different geometries under impact loading

  • Husem, Metin;Cosgun, Suleyman I.;Sesli, Hasan
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.583-592
    • /
    • 2018
  • Today, buildings are exposed to the effects such as explosion and impact loads. Usually, explosion and impact loads that act on the buildings such as nuclear power plants, airports, defense industry and military facilities, can occur occasionally on the normal buildings because of some reasons like drop weight impacts, natural gas system explosions, and terrorist attacks. Therefore, it has become important to examine the behavior of reinforced concrete (RC) structures under impact loading. Development of computational mechanics has facilitated the modeling of such load conditions. In this study, three kinds of RC walls that have different geometric forms (square, ellipse, and circle) and used in guardhouses with same usage area were modeled with Abaqus finite element software. The three configurations were subjected to the same impact energy to determine the geometric form that gives the best behavior under the impact loading. As a result of the analyses, the transverse impact forces and failure modes of RC walls under impact loading were obtained. Circular formed (CF) reinforced concrete wall which has same impact resistance in each direction had more advantages. Nonetheless, in the case of the impact loading occurring in the major axis direction of the ellipse (EF-1), the elliptical formed reinforced concrete wall has higher impact resistance.

Environmental Impact Evaluation of the Waste Cooking Oil Recycling Products (폐식용유 재활용 제품의 환경성 평가)

  • Kim, Tae-Suk;Kim, Dong-Gyue;Chung, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.516-525
    • /
    • 2015
  • In this study, Life Cycle Assessment(LCA) was applied to the production processes of waste cooking oil recycling products. Recycling products as defined in the Law of Saving of Resources and Recycling Promotion are biodiesel and soap. Weighting result of biodiesel production process showed that the most significant impact potential was abiotic resource depletion(84.17%) followed by global warming(13.93%). In the case of the soap, the most significant impact potential was also abiotic resource depletion(58.59%) followed by global warming(33.71%). In terms of the whole system of the biodiesel production process, methanol showed the largest environmental impact potential(87.35%). While in the case of the soap, sodium chloride showed the largest environmental impact potential(99.99%). This study suggests that there should be improvement of the methanol recovery system in the biodiesel production process and also appropriate use of the major environmental impact materials in both processes.