• 제목/요약/키워드: System heat pump

검색결과 1,123건 처리시간 0.03초

멀티형 히트펌프 시스템 컴퓨터 시뮬레이션과 실험적 검증 (Multi type heat pump system computer simulation and experimental verification)

  • 한도영;정민영
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.12-19
    • /
    • 2000
  • The multi type heat pump system may provide more energy savings and better environmental conditions than the single type heat pump system may do. In order to design a multi type heat pump system, it may be recommended to develop the system simulation program, which can predict the characteristics of the system such as unit capacities, power consumptions, and system COP's. In this study, the steady state simulation program of the multi type heat pump system was developed. The results from the simulation program were compared with those from the experimental tests which were performed in the environmental chamber, Cooling tests show 3.11% and 0.94% of error in capacity and COP, and heating tests show 3.30% and 1.90% of error in capacity and COP, respectively. Therefore, the steady state simulation program developed for this study can effectively be used for the design and the performance prediction of the multi type heat pump system.

  • PDF

해수열원 및 폐열이용 고성능 열펌프 시스템 성능실험 (Performance Test for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy)

  • 최광일;오종택;오후규
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.979-986
    • /
    • 2003
  • The performance characteristics of heating and cooling operation for a heat pump system using seawater heat source and exhaust energy are presented. The heat pump system is made of a waste heat recovery system and a vapor compression refrigeration system. The working fluid is R-22. The heat pump system COPs are measured during heating and cooling operation modes, and the resultant COPs were 9.7 and 7.9, respectively, which are three times higher than those of the heat pump itself. Therefore, the performance of the heat pump system using exhaust energy is excellent compared to that of a general heat pump. The experimental data can be effectively used for the design of the high efficient heat pump using a seawater heat source.

해수 열원 및 폐열 이용 고성능 열펌프 시스템 모사 (Simulation for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy)

  • 최광일;오종택;오후규
    • 설비공학논문집
    • /
    • 제15권1호
    • /
    • pp.59-66
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics (COP) of the heat pump system for various operating conditions with the use of seawater heat source and exhaust energy. To accomplish the goal, first of all, the computer simulation for heat pump system is carried out. The heat pump system model is made of a waste heat recovery system and a vapor compression refrigeration system, and the working fluid is R-22. The model calculated the change of COP with the variation of temperature and flow rate. The COP and the plate heat exchanger (PHE) area of the heat pump system are considered moderately high in the condensation temperature of $25^{\circ}^C$ and the evaporation temperature of $2^{\circ}^C$ in indoor culture system. The simulation results will be used effectively for the design and the performance prediction of heat pump system using unused energy in a land base aquaculture system.

SUDS증발기를 사용한 2중열원 열펌프의 성능해석 (Performance analysis of dual source heat pump system with single unit dual source evaporator)

  • 우정선;이세균;이재효;박효순
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.391-400
    • /
    • 1999
  • The efficiency and capacity of an air source heat pump system decrease as the ambient temperature drops. One strategy of avoiding the decrease of the efficiency and capacity in air source heat pump system is to switch to another thermal energy source. Water can be a good candidate for the heat source. This paper presents the results of the performance analysis of heat pump system with a single unit dual source(SUDS) evaporator The heat exchanger combines two separated evaporators into a single evaporator and the object of the SUDS evaporator is to recover energy from dual heat sources, i.e. air and water. Simulation program is developed for the dual source heat pump system with a SUDS evaporator and experimental data are obtained and compared with the simulation results. Differences in heating capacity and COP are 7% and 8% respectively. Simulation results are in good agreement with the test results. Therefore, the developed program is effectively used for the design and performance prediction of the dual source heat pump system with a SUDS evaporator.

  • PDF

지열원 열펌프 시스템의 에너지 생산량 모니터링 신뢰도 향상 방안 연구 (A Study on the Monitoring Methods for Energy Production in Ground Source Heat Pump System)

  • 강신형;이광호;도성록;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권2호
    • /
    • pp.10-16
    • /
    • 2019
  • In this study, the present regulation of heat metering for the ground source heat pump was investigated. The ground source heat pump has been adopting the heat metering system used in the district heating system for estimating the heating and cooling energy production amount. The accuracy of the present heat metering systems for a water to water ground source heat pump is low, because the system for district heating has a relatively high temperature range comparing with the ground source heat pump operating conditions. Even though the heat amount for the building side should be measured, the heat absorption and extraction amount from or to the ground was measured for the water to air ground source heat pump due to the difficulty of estimating the air side heating and cooling capacity in the present regulation. It is highly recommended to validate the heat metering system to have reliability for the ground source heat pump and develop the system to be applicable water to air ground source heat pump.

열펌프-잠열축열 시스템의 온실 난방 특성 연구 (Greenhouse Heating Characteristics of Heat Pump-Latent Heat Storage System)

  • 강연구;송현갑
    • Journal of Biosystems Engineering
    • /
    • 제25권5호
    • /
    • pp.379-384
    • /
    • 2000
  • In order to use the natural thermal energy as much as possible for greenhouse heating, the air-air heat pump system involved PCM(phase change material) latent heat storage system was composed, and three types of greenhouse heating system(greenhouse system, greenhouse-PCM latent heat storage system, greenhouse-PCM latent heat storage-heat pump system) were recomposed from the greenhouse heating units to analyze the heating characteristics. The results could be concluded as follows; 1) In the greenhouse heated by the heat pump under the solar radiation of 406.39W/$m^2$, the maximum PCM temperature in the latent heat storage system was 24$^{\circ}C$ and the accumulated thermal energy stored in PCM mass of 816kg during the daytime was 100,320kJ. In the greenhouse without heat pump under the maximum solar radiation of 452.83W/$m^2$, the maximum PCM temperature in the latent heat storage system was 22$^{\circ}C$ and the accumulated thermal energy stored during the daytime was 52.250kJ. 2) In the greenhouse-PCM system without heat pump the heat stored in soil layers from the surface to 30cm of the soil depth was 450㎉/$m^2$. 3) In all of the greenhouse heating systems, the difference between the air temperature in greenhouse and the ambient temperature was about 20~23$^{\circ}C$ in the daytime. In the greenhouse without heat pump and PCM latent heat storage system the difference between the ambient temperature and the air temperature in the greenhouse was about 6~7$^{\circ}C$ in the nighttime, in the greenhouse with only PCM latent heat storage system the temperature difference about 7~13$^{\circ}C$ in the nighttime and in the greenhouse with the heat pump and PCM latent heat storage system about 9~14$^{\circ}C$ in the nighttime.

  • PDF

냉매 과냉각 시스템을 이용한 열펌프의 성능향상에 관한 연구 (Performance Enhancement of the Heat Pump Using the Refrigerant Subcooling System)

  • 손창효;윤찬일;박승준;이동건;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.106-111
    • /
    • 2001
  • The performance characteristics of heat pump system using the new refrigerant subcooling system were investigated. The new heat pump system has the ice storage tank to accumulate the latent heat of the refrigerant during the night-time. The heat is released to subcool the saturated refrigerant liquid at the outlet of a condenser in the daytime. The experimental apparatus is a well-instrumented heat pump which consisted of a refrigerant loop and a coolant loop. The test sections(condenser and evaporator) were made of tube-in-tube heat exchanger with the horizontal copper tube of 12.7[mm] outer diameter and 9.5[mm] inner diameter. The evaporating temperatures ranged from $-5[^{\circ}C]$ to $0[^{\circ}C]$ and the subcooling degrees of the refrigerant varied from $15[^{\circ}C]$ to $25[^{\circ}C]$. The test of the ice storage was carried out at evaporating temperature of $-10[^{\circ}C]$ and the ice storage mode is an ice-on-coil type. The main results were summarized as follows ; The refrigerant mass flow rate and compressor shaft power of the heat pump system were independent of the subcooling degrees. The cooling capacity o the heat pump system increases as the evaporating temperature and subcooling degree increases. The cooling capacity of the heat pump system is about 25 to 30% higher than that of normal heat pump system. The COP of the heat pump system which subcooled the refrigerant liquid at the outlet of the condenser is about 28% higher than that of the normal heat pump system.

  • PDF

축열수조를 이용하는 열펌프식 난방의 특성에 관한 연구 (A Study on The Characteristics of Heat Pump Heating System Utilizing Heat Storage Tank)

  • 김효경;이기영;박문수;황인수
    • 대한설비공학회지:설비저널
    • /
    • 제16권4호
    • /
    • pp.392-405
    • /
    • 1987
  • A study of appling solar assisted heat pump heating system to Korean climatic charac-teritics has been undertaken through computer simulation using TRNSYS (A Transient System Simulation Program). It is insufficient for heating system composed of each of solar and heat pump system to supply heat met with heating load. So SAHP (Solar Assisted Heat Pump) heating systems which combined solar system with heat pump system are analized using the standard weather data of Korea. And SAHP heating systems are categorized into the series system in which the solar storage is used as the source for the heat pump, the parallel system in which ambient air is used as the source for the heat pump, and the dual source system in which the storage or ambient is used as the source depending on which source yields the lowest work input. These combined system are better than each of solar and heat pump heating system in view of thermal performance, and parallel system is most effective among these combined systems.

  • PDF

하천수 열원 이용 열펌프 시스템의 LCC 분석 (LCC Analysis of a Heat Pump System Using River Water)

  • 한상수;박차식;김용찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1424-1428
    • /
    • 2009
  • The performance of a heat pump using river water as a heat source was compared with that of a conventional air-conditioner for cooling and a boiler system for heating. The heat pump system using river water considered the 1-stage cycle for cooling and the 2-stage cycle for heating. The COPs of the river water source heat pump were $0.5{\sim}1.1$ higher than those of the conventional system in the cooling season. The LCC of the river water source heat pump system was lower 13.5% and 32.4% than that of the conventional system I and II. In addition, when the initial cost ratios of the river water source heat pump system to the conventional system I and II were less than 1.2 and 1.4, respectively, an acceptable payback was found to be less than 5 years.

  • PDF

무공해자동차용 R134a 히트펌프 시스템의 난방성능 향상에 관한 실험적 연구 (Experimental Study on the Heating Performance Improvement of R134a Heat Pump System for Zero Emission Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권6호
    • /
    • pp.257-262
    • /
    • 2014
  • This paper describes an experimental study for heating performance that can be used in R-134a automobile heat pump systems. The heat pump system is widely studied for heating system in zero-emission vehicles to attain both the small power consumption and the effective heating of the cabin. This paper presents the experimental results of the influence on heating capacity and coefficient of performance of heat pump system. Tests were performed with different sizes of internal and external heat exchangers, and refrigerant flow rate was also considered in two-way flow devices. In addition, the heat, air, and water sources with the heat pump system were examined. The experimental results with the heat pump system were used to analyze the impact on performances. The best combination of performance was A-inside heat exchanger, B-outside heat exchanger, and B-flow device, respectively. In addition, a water heat-source was found to give roughly 40% of better performance than an air heat-source heat pump system.