• Title/Summary/Keyword: System Safety Process

Search Result 2,450, Processing Time 0.031 seconds

Topology, Shape and Sizing Optimization of the Jig Supporting High Voltage Pothead (고전압 장비 지그의 동특성에 대한 위상, 형상 및 치수 최적화)

  • Choi, Bong-Kyun;Lee, Jae-Hwan;Kim, Young-Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.351-358
    • /
    • 2013
  • In the electric power supplying industry, outdoor sealing end (pothead) is used and sometimes it is necessary to check the seismic qualification analysis or test which is intended to demonstrate that the equipment have adequate integrity to withstand stress of the specified seismic event and still performs their function. And since the pothead is mounted on the supporting jig, the avoidance of resonance between the pothead and jig is required. In order to design jig, three types of optimization are performed to get the minimum weight while satisfying the natural frequency constraint using ANSYS. Optimal array, position and thickness of truss members of the jig are obtained through topology, shape and sizing optimization process, respectively. And seismic analysis of the pothead on the jig for given RRS acceleration computes the displacement and stress of the pothead which shows the safety of the pothead. The obtained natural frequency, mass, and member thickness of the jig are compared with those of the reference jig which was used for seismic experimental test. The numerical results of the jig in the research is more optimized than the jig used in the experimental test.

Explosion Characteristics by Different Sizes in the Wall Surface Shape of a Water Gel Barrier (Water Gel Barrier 표면형상의 크기에 따른 폭발특성)

  • Park, Dal-Jae;Kim, Nam-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.65-70
    • /
    • 2012
  • Experimental investigations were carried out to examine the explosion characteristics by different sizes in the wall surface shape of a water gel barrier in an explosion chamber, 1,600 mm in length with a square cross-section of $100{\times}100\;mm^2$. The sizes in the wall surface shape were varied by using water gel barriers with a cross-section of $100{\times}200\;mm^2$ and its were varied in the bottom of the chamber away 300, 700 and 1,100 mm, respectively from the closed end of the chamber. The flame propagation images were photographed with a high speed camera and the pressure was recorded using a pressure transducer and a data acquisition system. It was found that as the size of the wall surface shape increased, the flame propagation process and the time taken to reach the maximum pressure were found to be faster. As a result, both the flame speed and the explosion overpressure increased as the size of the wall surface shape increased.

Measurement and Prediction of Autoignition Temperature (AIT) and Ignition Delay Time of n-Pentanol and p-Xylene Mixture (n-Pentanol p-Xylene 과 혼합물의 최소자연발화온도와 발화지연시간의 측정 및 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.1-6
    • /
    • 2017
  • The fire and explosion properties of combustible materials are necessary for the safe handling, storage, transportation and disposal. Typical combustion characteristics for process safety include auto ignition temperature(AIT). The AIT is an important index for the safe handling of combustible liquids. The AIT is the lowest temperature at which the material will spontaneously ignite. In this study, the AITs and ignition delay times of n-pentanol and p-xylene mixture were measured by using ASTM E659 apparatus. The AITs of n-pentanol and p-xylene which constituted binary system were $285^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs and ignition delay times of n-pentanol and p-xylene mixture were a good agreement with the calculated AITs and ignition delay times by the proposed equations with a few A.A.D. (average absolute deviation). Therefore, it is possible to estimate the AITs and ignition delay times in other compositions of n-pentanol and p-xylene mixture by using the predictive equations which presented in this study.

A Study on the Improvement of Load Balance for Materials Supply Worker in Automobile Assembly Line (자동차 조립공정 부품공급 작업자별 부하밸런스 평준화 알고리즘 연구)

  • Jang, Jung-Hwan;Jang, Jing-Lun;Quan, Yu;Jho, Yong-Chul;Kim, Yu-Seong;Bae, Sang-Don;Kang, Du-Seok;Lee, Jae-Woong;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2016
  • The efficiency of the purchasing and procurement logistics is important in automotive industry. The rationalization of production system is directly impact on productivity and quality. For this reason importance of logistics is high. Despite we are continuously making effort, our country are still below the level than developed country on logistics efficiency. Rising labor costs is an important factor in increasing logistics costs. So workforce reduction in logistics department is a large part. We deal with A-company inbound logistics, especially procurement logistics in automotive logistics as research object. So in this study we do research on work load balance about workers. We do research on 1,475 kinds of components in procurement process. We applied work load balance algorithm on chassis, final, sequence, trim warehouses workers. According to number of workers and average M/H, algorithm is applied in two ways. After applied work load balance algorithm we reduced numbers of workers from 28 to 20 and improved worker load balance rate from 47.1% to 93.7%.

A Case Study on the Sustainability for a Stanchion of Recreational Crafts based on the Design for Additive Manufacturing Using a FFF-type 3D Printer (FFF 3D 프린터를 이용한 DfAM 기반 소형선박용 스탠션 지속가능 개발 사례 연구)

  • Lee, Dong-Kun;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.294-302
    • /
    • 2021
  • In this study, the 3D printing technique called design for additive manufacturing (DfAM) that is widely used in various industries was applied to marine leisure ships of equipment. The DfAM for the stanchion for crew safety was applied to the equipment used in an actual recreational craft. As design constraints, the design alternatives were not to exceed the safety and weight of the existing stainless steel material, which were reviewed, and the production of a low-cost FFF-type 3D printing method that can be used even in small shipyards was considered. Until now, additive manufacturing has been used for manufacturing only prototypes owing to its limitations of high manufacturing cost and low strength; however, in this study, it was applied to the mass production process to replace existing products. Thus, a design was developed with low manufacturing cost, adequate performance maintenance, and increased design freedom, and the optimal design was derived via structural analysis comparisons for each design alternative. In addition, a life-cycle assessment based on the ISO 1404X was conducted to develop sustainable products. Through this study, the effectiveness of additive manufacturing was examined for future applications in the shipbuilding industry.

Electrical fire prediction model study using machine learning (기계학습을 통한 전기화재 예측모델 연구)

  • Ko, Kyeong-Seok;Hwang, Dong-Hyun;Park, Sang-June;Moon, Ga-Gyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.703-710
    • /
    • 2018
  • Although various efforts have been made every year to reduce electric fire accidents such as accident analysis and inspection for electric fire accidents, there is no effective countermeasure due to lack of effective decision support system and existing cumulative data utilization method. The purpose of this study is to develop an algorithm for predicting electric fire based on data such as electric safety inspection data, electric fire accident information, building information, and weather information. Through the pre-processing of collected data for each institution such as Korea Electrical Safety Corporation, Meteorological Administration, Ministry of Land, Infrastructure, and Transport, Fire Defense Headquarters, convergence, analysis, modeling, and verification process, we derive the factors influencing electric fire and develop prediction models. The results showed insulation resistance value, humidity, wind speed, building deterioration(aging), floor space ratio, building coverage ratio and building use. The accuracy of prediction model using random forest algorithm was 74.7%.

Priority-based Multi-DNN scheduling framework for autonomous vehicles (자율주행차용 우선순위 기반 다중 DNN 모델 스케줄링 프레임워크)

  • Cho, Ho-Jin;Hong, Sun-Pyo;Kim, Myung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.368-376
    • /
    • 2021
  • With the recent development of deep learning technology, autonomous things technology is attracting attention, and DNNs are widely used in embedded systems such as drones and autonomous vehicles. Embedded systems that can perform large-scale operations and process multiple DNNs for high recognition accuracy without relying on the cloud are being released. DNNs with various levels of priority exist within these systems. DNNs related to the safety-critical applications of autonomous vehicles have the highest priority, and they must be handled first. In this paper, we propose a priority-based scheduling framework for DNNs when multiple DNNs are executed simultaneously. Even if a low-priority DNN is being executed first, a high-priority DNN can preempt it, guaranteeing the fast response characteristics of safety-critical applications of autonomous vehicles. As a result of checking through extensive experiments, the performance improved by up to 76.6% in the actual commercial board.

Simplified Analysis of Agricultural Water Network Model Using SWMM - A Case Study of Mandae Reservoir - (SWMM을 활용한 농업용수 네트워크 모형 단순화 분석 - 만대 저수지 사례를 중심으로 -)

  • An, Sung-Soo;Bang, Na-Kyoung;Lee, Jong-Seo;Bang, Sung-Soo;Nam, Won-Ho;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.27-37
    • /
    • 2022
  • This study established a water supply network based on the operation case of Mandae Reservoir in Yanggu-gun, Gangwon-do, to analyze the efficient distribution and management of agricultural water supplied from the reservoir to irrigation areas using the hydraulic analysis model SWMM. In order to construct a model to analyze the water canal network, network conditions needs to be simplified, and in particular, excessive detail or simplification of the irrigation area can lead to errors in the analysis results. Therefore, the effect of the water canal network model was analyzed by simulating the appropriate simplification process step by step. The results of simplifying the actual block shape of the analysis target area using SWMM showed that there was no significant difference in the results even if 7 lots were simplified to 2. Also, it was found that the construction and analysis of a simplified network model were reliable when the excess quantity was 2% or more compared to the required quantity for each case of analysis of the paddy field.

Applicability Analysis of Measurement Data Classification and Spatial Interpolation to Improve IUGIM Accuracy (지하공간통합지도의 정확도 향상을 위한 계측 데이터 분류 및 공간 보간 기법 적용성 분석)

  • Lee, Sang-Yun;Song, Ki-Il;Kang, Kyung-Nam;Kim, Wooram;An, Joon-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.17-29
    • /
    • 2022
  • Recently, the interest in integrated underground geospatial information mapping (IUGIM) to ensure the safety of underground spaces and facilities has been increasing. Because IUGIM is used in the fields of underground space development and underground safety management, the up-to-dateness and accuracy of information are critical. In this study, IUGIM and field data were classified, and the accuracy of IUGIM was improved by spatial interpolation. A spatial interpolation technique was used to process borehole data in IUGIM, and a quantitative evaluation was performed with mean absolute error and root mean square error through the cross-validation of seven interpolation results according to the technique and model. From the cross-validation results, accuracy decreased in the order of nonuniform rational B-spline, Kriging, and inverse distance weighting. In the case of Kriging, the accuracy difference according to the variogram model was insignificant, and Kriging using the spherical variogram exhibited the best accuracy.

Application of Non-Open Cut H.A.S Method to Improve Constructability (시공성 향상을 위한 비개착 H.A.S 공법 적용에 관한 연구)

  • Choi, Jung-Youl;Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.765-773
    • /
    • 2022
  • This study is a study on the application of a horizontal excavation machine system to improve constructability. In this study, the structural stability of non-covered temporary facilities was evaluated by comparing field measurements and numerical analysis. In addition, the appropriateness of the measurement results was analyzed by comparing and analyzing the results of numerical analysis with the analysis results applying the Gaussian probability density function to the measurement results. In this study, structural safety and long-term durability of the linkage were analyzed based on numerical analysis. As a result of the study, it was analyzed that the non-open cut method (H.A.S. method) of this study secures structural safety and constructability as the behavior in the actual construction process is more safe than the numerical analysis results, even if the uncertainty of the ground condition is taken into account.