• 제목/요약/키워드: System Reliability Analysis

검색결과 3,532건 처리시간 0.037초

다중 파괴모드를 고려한 사면의 시스템 신뢰도해석 (System Reliability Analysis of Slope Considering Multiple Failure Modes)

  • 조성은
    • 한국지반공학회논문집
    • /
    • 제29권9호
    • /
    • pp.71-80
    • /
    • 2013
  • 본 연구에서는 다중 파괴모드를 고려한 사면의 신뢰도해석에 대하여 연구한다. 해석은 크게 두 부분으로 나뉜다. 첫 번째, Der Kiureghian과 Dakessian이 제안한 barrier method를 사용하여 시스템 신뢰도에 크게 영향을 미치는 중요 파괴모드를 연속적으로 탐색하여 찾아낸다. 둘째로, 찾아낸 중요 파괴모드들과 이에 해당하는 설계점들을 바탕으로 사면의 파괴확률을 계산한다. 다중 파괴모드를 갖는 사면의 신뢰도해석에서 파괴확률은 다중점 일차신뢰도법, Ditlevsen의 구간해법 및 몬테카를로 시뮬레이션 등을 이용하여 평가할 수 있다. 본 연구에서는 예제 해석을 통하여 이들 방법들의 비교연구를 수행하였다. 해석결과는 토사사면에 많은 수의 잠재적인 파괴면이 존재할 수 있지만, 사면의 시스템 파괴확률은 소수의 중요 파괴면에 의해 지배된다는 것을 보여준다. 따라서 토사사면의 시스템 신뢰도해석을 위해서 가장 중요한 단계는 모든 중요 파괴모드를 효율적인 방법에 의해서 탐색하여 결정하는 것이다.

Probabilistic optimization of nailing system for soil walls in uncertain condition

  • Mitra Jafarbeglou;Farzin Kalantary
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.597-609
    • /
    • 2023
  • One of the applicable methods for the stabilization of soil walls is the nailing system which consists of tensile struts. The stability and safety of soil nail wall systems are influenced by the geometrical parameters of the nailing system. Generally, the determination of nailing parameters in order to achieve optimal performance of the nailing system for the safety of soil walls is defined in the framework of optimization problems. Also, according to the various uncertainty in the mechanical parameters of soil structures, it is necessary to evaluate the reliability of the system as a probabilistic problem. In this paper, the optimal design of the nailing system is carried out in deterministic and probabilistic cases using meta-heuristic and reliability-based design optimization methods. The colliding body optimization algorithm and first-order reliability method are used for optimization and reliability analysis problems, respectively. The objective function is defined based on the total cost of nails and safety factors and reliability index are selected as constraints. The mechanical properties of the nailing system are selected as design variables and the mechanical properties of the soil are selected as random variables. The results show that the reliability of the optimally designed soil nail system is very sensitive to uncertainty in soil mechanical parameters. Also, the design results are affected by uncertainties in soil mechanical parameters due to the values of safety factors. Reliability-based design optimization results show that a nailing system can be designed for the expected level of reliability and failure probability.

Reliability analysis of nuclear safety-class DCS based on T-S fuzzy fault tree and Bayesian network

  • Xu Zhang;Zhiguang Deng;Yifan Jian;Qichang Huang;Hao Peng;Quan Ma
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1901-1910
    • /
    • 2023
  • The safety-class (1E) digital control system (DCS) of nuclear power plant characterized structural multiple redundancies, therefore, it is important to quantitatively evaluate the reliability of DCS in different degree of backup loss. In this paper, a reliability evaluation model based on T-S fuzzy fault tree (FT) is proposed for 1E DCS of nuclear power plant, in which the connection relationship between components is described by T-S fuzzy gates. Specifically, an output rejection control system is chosen as an example, based on the T-S fuzzy FT model, the key indicators such as probabilistic importance are calculated, and for a further discussion, the T-S fuzzy FT model is transformed into Bayesian Network(BN) equivalently, and the fault diagnosis based on probabilistic analysis is accomplished. Combined with the analysis of actual objects, the effectiveness of proposed method is proved.

Studies on a parallel system with two types of failure

  • El-Damcese, M.A.;Alaidi, Sharhabeel;Shama, M.S.
    • International Journal of Reliability and Applications
    • /
    • 제16권1호
    • /
    • pp.1-13
    • /
    • 2015
  • In this paper, we investigate reliability and availability of repairable systems with two types of failure. The first one is to one unit and the second one is to M units in parallel structure. Let failure rate and repair rate of [type1, type2] components are assumed to be exponentially distributed. The expressions of availability and reliability characteristics such as the system reliability and the mean time to failure are derived for two systems. We used several cases to analyze graphically the effect of various system parameters on the reliability system and availability system.

An Evolution of Software Reliability in a Large Scale Switching System: using the software

  • Lee, Jae-Ki;Nam, Sang-Sik;Kim, Chang-Bong
    • 한국통신학회논문지
    • /
    • 제29권4A호
    • /
    • pp.399-414
    • /
    • 2004
  • In this paper, an evolution of software reliability engineering in a large-scale software project is summarized. The considered software consists of many components, called functional blocks in software of switching system. These functional blocks are served as the unit of coding and test, and the software is continuously updated by adding new functional blocks. We are mainly concerned with the analysis of the effects of these software components in software reliability and reliability evolution. We analyze the static characteristics of the software related to software reliability using collected failure data during system test. We also discussed a pattern which represents a local and global growth of the software reliability as version evolves. To find the pattern of system software, we apply the S-shaped model to a collection of failure data sets of each evolutionary version and the Goel-Okumoto(G-O) model to a grouped overall failure data set. We expect this pattern analysis will be helpful to plan and manage necessary human/resources fur a new similar software project which is developed under the same developing circumstances by estimating the total software failures with respect to its size and time.

Component-Based System Reliability using MCMC Simulation

  • ChauPattnaik, Sampa;Ray, Mitrabinda;Nayak, Mitalimadhusmita;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • 제20권2호
    • /
    • pp.79-89
    • /
    • 2022
  • To compute the mean and variance of component-based reliability software, we focused on path-based reliability analysis. System reliability depends on the transition probabilities of components within a system and reliability of the individual components as basic input parameters. The uncertainty in these parameters is estimated from the test data of the corresponding components and arises from the software architecture, failure behaviors, software growth models etc. Typically, researchers perform Monte Carlo simulations to study uncertainty. Thus, we considered a Markov chain Monte Carlo (MCMC) simulation to calculate uncertainty, as it generates random samples through sequential methods. The MCMC approach determines the input parameters from the probability distribution, and then calculates the average approximate expectations for a reliability estimation. The comparison of different techniques for uncertainty analysis helps in selecting the most suitable technique based on data requirements and reliability measures related to the number of components.

퍼지추론을 이용한 신뢰성 시험 대상 품목 선정 전략 (A Strategy of Selecting Critical Items for Reliability Tests Using Fuzzy Inference)

  • 손영범;양정민
    • 대한임베디드공학회논문지
    • /
    • 제13권4호
    • /
    • pp.205-214
    • /
    • 2018
  • The reliability test is a crucial step for ensuring robustness of high-cost and complex weapon systems. In this paper, we present a set of quantitative criteria to select critical parts or components in weapon systems for the reliability test, and implement a fuzzy inference system by applying developed criteria to fuzzy theory. We classify the selection criteria of critical parts or components into four fuzzy sets and membership functions. A fuzzy inference rule is proposed based on the AHP (Analytic Hierarchy Process) analysis technique so as to derive a convincing reliability test. The credibility of the fuzzy inference system is confirmed through a case study using actual equipment data exacted from an existent weapon system.

제어봉 제어 시스템의 전력함 PCB 카드에 대한 신뢰성 예측 (THE RELIABILITY PREDICTION OF PCB CARDS OF POWER CABINET OF CONTROL ROD CONTROL SYSTEM)

  • 정해원;서중석;육심균;남정한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2028-2030
    • /
    • 2003
  • This paper describes the results of reliability prediction analysis of control rod control system, which is being developed as part of KNICS project. The results of reliability prediction indicate MTBF(Mean Time Between Failure) of cards for control rod control system. A purpose of reliability prediction is to evaluate MTBF of cards, identify the design drawbacks of cards, and propose design improvement to a designer to help design the more reliable control rod control system. This reliability prediction analysis used the the part count and part stress method in the basis of MIL-HDBK-217F.

  • PDF

수력발전소 물 공급 설비에 대한 FTA 모형 (FTA Modeling of Water Supply System for Hydro-power Plant)

  • 전태보;권창섭
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.145-155
    • /
    • 2006
  • High level of reliability in facility operation is specifically required these days. The goal of this study is to secure a methodology for reliability analysis of hydro-power plant so that an appropriate decision for operation and investment can be made. Fault tree analysis of water supply system within hydro-power plant has been performed in this study. We briefly examined the electric power generation facility and water supply system. We then developed fault tree for the water supply system based on failure modes and effects analysis. We conclude this study and provided future research areas.

  • PDF

PCS 교환기의 In-service 신뢰도 성장 분석 (Reliability Growth Analysis for In-service PCS Telecommunication System)

  • 정원;장순태
    • 한국산업정보학회논문지
    • /
    • 제5권4호
    • /
    • pp.39-46
    • /
    • 2000
  • New products often have in-service reliability problem despite an intensive development program. Therefore reliability data must be collected and analyzed, and improvements designed and implemented. A type of reliability incentive contract which has recently attracted a lot of attention is reliability improvement warranty(RIW). It has been employed by military, airlines, telecommunication systems, and public utilities. An RIW contract requires that the supplies carries out all repairs, modify the equipment to improve its reliability, and provides all spates needed, for a fixed period, for once-off fee. This paper presents the reliability growth analysis and management methods for in-service MC68 microprocessor, which is the main component of the base station controller in PCS(Personal Communication Service) telecommunication system. The methods will provide guidelines to monitor reliability program in planning RIW contract.

  • PDF