• 제목/요약/키워드: System Reliability Analysis

검색결과 3,532건 처리시간 0.041초

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

반강결 프레임 구조물의 시스템 신뢰성 해석 - 비닐하우스를 중심으로 - (Structural System Reliability Analysis of Semi-rigid Connected Frame - Focused on Plastic Greenhouse -)

  • 이상익;이종혁;정영준;김동수;서병훈;서예진;최원
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.67-77
    • /
    • 2022
  • Recently, the trend in structural analysis and design is moving towards the development of reliable system. The reliability-based method defines various limit states related to usability and failure, thereby enabling multiple levels of design according to the importance of a structure. Meanwhile, an actual structure is composed of a set of several elements, and particularly, a frame type is composed of a system in which the members are connected each other. At this time, the actual connection between members is in a semi-rigid condition, not in complete rigid or hinged. This semi-rigid is found in several structures, especially in agricultural facilities designed with lightweight materials. In this study, a system reliability analysis technique for frame structure was established, and applied to an analysis of the semi-rigid connection. Various conditions of correlation were applied to reflect the connectivity between members, and through this, the limitations of existing structural analysis method and the behavioral characteristics of structure were analyzed. The failure probability of the frame member component and the overall structure system was significantly different in consideration of the semi-rigid connection. In addition, it was evaluated that the behavior of structure can be more accurately analyzed if the correlation according to the position of members in a system is further investigated.

Reliability computation technique for ball bearing under the stress-strength model

  • Nayak, S.;Seal, B.
    • International Journal of Reliability and Applications
    • /
    • 제17권1호
    • /
    • pp.51-63
    • /
    • 2016
  • Stress function of ball bearing is function of multiple stochastic factors and this system is so complex that analytical expression for reliability is difficult to obtain. To address this pressing problem, in this article, we have made an attempt to approximate system reliability of this important item based on reliability bounds under the stress strength setup. This article also provides level of error of this item. Numerical analysis has been adopted to show the closeness between the upper and lower bounds of this item.

변전소 자동화 시스템의 신뢰도 해석에 관한 연구 (A Study on Reliability Analysis of Substation Automation System)

  • 박철원
    • 전기학회논문지P
    • /
    • 제64권4호
    • /
    • pp.281-285
    • /
    • 2015
  • Electrical energy supply interruption degrades reliability of power supply as well as social costs and economic loss. It is important to assess the reliability of the power system. Nowadays IEC61850 based substation automation system(SAS) has been developed for an updating of automation and interoperability. In this study, three kinds of reliability block diagram(RBD) were proposed to examine of network availability of the three types SAS. And reliability and unreliability of the SAS was formulated using the RBD. Finally, while varying the value of reliability and unreliability, the reliability and the unreliability of the overall system were evaluated.

고속주축의 고장 및 수명평가에 관한 연구 (A Study on the Failure and Life Assessment of High Speed Spindle)

  • 이태홍
    • 한국정밀공학회지
    • /
    • 제31권1호
    • /
    • pp.67-73
    • /
    • 2014
  • A reliability evaluation or prediction can be defined as MTBF which stands for mean time between failures (Exclusively for repairable failures). Spindle system has huge effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, it is unusually difficult to predict reliability because there are lack of data and research about reliability of spindle system. Standards and methods of examinations for reliability evaluation of machine tools are scarce at local and abroad as well. Therefore, this research is meant to improve the reliability of spindle system before mass produced with developing standards of reliability and methods of examinations through FMEA to assess reliability of spindle system in prototype stages of developing high speed spindle system of machining center.

TRELSS를 이용한 한전계통의 확률론적 신뢰도 평가의 감도해석 (Sensitivity Analysis of Probabilistic Reliability Evaluation of KEPCO System Using TRELSS)

  • 트란트룽틴;권중지;최재석;전동훈;박윤석;한경남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.234-236
    • /
    • 2005
  • The importance and necessity conducting studios on grid reliability evaluation have been increasingly important In recent years due to the number of black-out events occurring through in the world. Quantity evaluation of transmission system reliability is very important in a competitive electricity environment. The reason is that the successful operation of electric power under a deregulated electricity market depends on transmission system reliability management. Also in Korea it takes places. The results of many case studios fer the KEPCO system using the Transmission Reliability Evaluation for Large-Scale Systems (TRELSS) Version 6_2, a program developed by EPRI are introduced in this paper. Some sensitivity analysis has been Included in case study. This paper suggests that the some Important input parameters of the TRELSS can be determined optimally from this sensitivity analysis fer high reliability level operation of a system.

  • PDF

대형 교환 시스템의 소프트웨어 신뢰도 성장 (An Evolution of Reliability of large Scale Software of a Switching System)

  • 이재기;신상권;남상식;박권철
    • 전자통신동향분석
    • /
    • 제14권4호통권58호
    • /
    • pp.1-9
    • /
    • 1999
  • In this paper, we summarize the lessons learned from the applications of the software reliability engineering to a large-scale software project. The considered software is the software system of the TDX-10 ISDN switching system. The considered software consists of many components, called functional blocks. These functional blocks serve as the unit of coding and test. The software is continuing to be developed by adding new functional blocks. We are mainly concerned with the analysis of the effects of these software components to software reliability and with the analysis of the reliability evolution. We analyze the static characteristics of the software related to software reliability using failure data collected during system test. We also discussed a pattern which represents a local and global growth of the software reliability as version evolves. To find the pattern of software of the TDX-10 ISDN system, we apply the S-shaped model to a collection of failure data sets of each evolutionary version and the Goel-Okumoto (G-O) model to a grouped overall failure data set. We expect this pattern analysis will be helpful to plan and manage necessary human/resources for a new similar software project which is developed under the same developing circumstances by estimating the total software failures with respect to its size and time.

TRELSS를 이용한 우리나라 전력계통의 확률론적 신뢰도 평가에 관한 연구 (A Study on Probabilistic Reliability Evaluation of KEPCO System using TRELSS)

  • 전동훈;최재석;김건중
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권11호
    • /
    • pp.453-462
    • /
    • 2006
  • This paper evaluates the reliability of KEPCO system using TRELSS, which is a probabilistic reliability evaluation program for large-scaled power system. In order to reflect the characteristic of KEPCO system, the sensitivity of reliability indices such as LOLP, EDLC, EENS and Energy Curtailment for variations of TRELSS parameter and input data was analyzed. Additionally, probabilistic reliability of KEPCO system reflecting sensitivity analysis results was systematically evaluated and simulated. Finally, maximum acceptable FOR of KEPCO system to satisfy reliability criterion, which meet in process of establishing the basic plan for long-term electricity supply and demand is suggested.

Application of Reliability Centered Maintenance Strategy to Safety Injection System for APR1400

  • Rezk, Osama;Jung, JaeCheon;Lee, YongKwan
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.41-58
    • /
    • 2016
  • Reliability Centered Maintenance (RCM) introduces a systematic method and decision logic tree for utilizing previous operating experience focused on reliability and optimization of maintenance activities. In this paper RCM methodology is applied on safety injection system for APR-1400. Functional Failure Mode Effects and Criticality Analysis (FME&CA) are applied to evaluate the failure modes and the effect on the component, system and plant. Logic Tree Analysis (LTA) is used to determine the optimum maintenance tasks. The results show that increasing the condition based maintenance will reduce component failure and improve reliability and availability of the system. Also the extension of the surveillance test interval of Safety Injection Pumps (SIPs) would lead to an improved pump's availability, eliminate the unnecessary maintenance tasks and this will optimize maintenance activities.

태양광 시스템의 미션 프로파일 고려한 3-레벨 NPC 인버터의 DC-link 커패시터 신뢰성 비교 분석 (Comparative Reliability Analysis of DC-link Capacitor of 3-Level NPC Inverter Considering Mission-Profiles of PV Systems)

  • 최재헌;최의민
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.535-540
    • /
    • 2022
  • DC-link capacitors are reliability-critical components in a photovoltaic (PV) inverter. Typically, the lifetime of a DC-link capacitor is evaluated by considering the voltage and hot-spot temperature of the capacitor under the specific operating condition of the PV inverter. However, the output of the PV inverter is determined by solar irradiation and ambient temperature, which vary with the seasons; accordingly, the hot-spot temperature of the capacitor also changes. Therefore, the mission profile of the PV system should be considered to effectively evaluate the reliability of the DC-link capacitor. In this study, the reliability of the DC-link capacitor of a three-level NPC inverter is comparatively analyzed with and without considering the mission profiles of the PV system, where two mission profiles recorded in Arizona and Iza are considered. The accumulated damage of the DC-link capacitor is calculated based on the lifetime model by analyzing its thermal loading. Afterward, a reliability evaluation of the DC-link capacitor is performed at the component level and then at the system level by considering all capacitors by means of Monte Carlo analysis. Results reveal the importance of performing a mission-profile-based reliability evaluation during the design of high-reliability PV inverters to achieve the target reliability performance.