• Title/Summary/Keyword: System Reliability

Search Result 9,379, Processing Time 0.039 seconds

A Study on Reliability Prediction for Korea High Speed Train Control System (한국형고속철도 열차제어시스템 하부구성요소 신뢰도예측에 관한 연구)

  • Shin Duc-Ko;Lee Jae-Ho;Lee Kang-Mi;Kim Young-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.419-424
    • /
    • 2006
  • In this paper we study on a method to predict and to demonstrate the reliability of the Korea high speed train control system in quantitative point of view. For the prediction of the reliability in train control system which is composed of electronic parts, Relax Software 7.7 automation tool is employed and MIL-HDBK-217 Handbook that is a standard for the prediction of the failure rate in electronic components is used. Mean Time Between Failure (MTBF) is predicted based on the failure rate of the subsystems, State Modeling and Markov Modeling method is used to express a reliability function of the train control system composed by hardware redundancy as a function of time. We propose a Reliability Test which is performed on the level of the subsystems and Failure Report, Analysing, Correction action system which use the test operation data to prove the predicted reliability.

Reliability Assessment of Traction System of Korean High Speed Train (한국형 고속열차 추진시스템의 신뢰성 평가)

  • Seo Sung-Il;Park Choon-Soo;Han Young-Jae;Lee Tae-Hyung;Kim Ki-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.434-438
    • /
    • 2005
  • In this paper, as the first step to assess and enhance the reliability of Korea High Speed Train, an electric traction system is selected and reliability analysis is carried out. The electric traction system is classified into subsystems and functional block diagrams and reliability block diagrams are drawn. Expressions for evaluating the reliability are derived and Mean Kilometer Between Service Failure is calculated using the trial track test results. The calculation results show reliability growth of the proposed system.

A Study on Reliability Characteristic Curve of Transmission & Substation System considering Device Fault's Uncertainty (설비고장의 불확실성을 고려한 송변전계통의 공급신뢰도 특성곡선에 관한 연구)

  • Jeon, Dong-Hoon;Kim, Kern-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1500-1506
    • /
    • 2008
  • In this paper, we proposed new reliability characteristic curve, which-can clearly show reliability property of transmission and substation system considering uncertainty such as frequency and duration of device fault. It express the relationship of duration of load curtailments, demand not supplied, and energy not served as “ y = $ax^{-1}$ " curve. and we proposed the method, which can objectively assess reliability of transmission and substation system using proposed characteristic curve as new reliability index. In this method, we used energy index of reliability(EIR) as a criterion of assessment. Finally, we performed a variety of case study for KEPCO system in order to verify usefulness of proposed method.

SYSTEM RELIABILITY-BASED EVALUATION OF BRIDGE SYSTEM REDUNDANCY AND STRENGTH (체계신뢰성에 기초한 교량의 시스템여용성 및 저항강도 평가)

  • 조효남;이승재;임종권
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.240-247
    • /
    • 1993
  • The precise prediction of reserved carrying capacity of bridge as a system is extremely difficult especially when the bridges are highly redundant and significantly deteriorated or damaged. This paper is intended to propose a new approach for the evaluation of reserved system carrying capacity of bridges in terms of equivalent system-strength, which may be defined as a bridge system-strength corresponding to the system reliability of the bridge. This can be derived from an inverse process based on the concept of FOSM form of system reliability index. It may be emphasized that this approach is very useful for the evaluation of the deterministic system redundancy and reserve strength which are measured in terms of either probabilistic system redundancy factor and reserve factor or deterministic system redundancy factor and reserve factor. The system reliability of bridges is formulated as a parallel-series model obtained from the FAM(Failure Mode Approach) based on the major failure mechanisms. AFOSM and IST methods are used for the reliability analysis of the proposed models. The proposed approach and method for the system redundancy and reserve safety/strength are applied to the safety assessment of actual RC and steel box-girder bridges. The results of the evaluation of reserved system safety or bridge system-strength in terms of the system redundancy and the system safety/strength are significantly different from those of element reliability-based or conventional methods.

  • PDF

Integrating Machine Reliability and Preventive Maintenance Planning in Manufacturing Cell Design

  • Das, Kanchan;Lashkari, R.S.;Sengupta, S.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.113-125
    • /
    • 2008
  • This paper presents a model for designing cellular manufacturing systems (CMS) by integrating system cost, machine reliability, and preventive maintenance (PM) planning. In a CMS, a part is processed using alternative process routes, each consisting of a sequence of visits to machines. Thus, a level of 'system reliability' is associated with the machines along the process route assigned to a part type. Assuming machine reliabilities to follow the Weibull distribution, the model assigns the machines to cells, and selects, for each part type, a process route which maximizes the overall system reliability and minimizes the total costs of manufacturing operations, machine underutilization, and inter-cell material handling. The model also incorporates a reliability based PM plan and an algorithm to implement the plan. The algorithm determines effective PM intervals for the CMS machines based on a group maintenance policy and thus minimizes the maintenance costs subject to acceptable machine reliability thresholds. The model is a large mixed integer linear program, and is solved using LINGO. The results point out that integrating PM in the CMS design improves the overall system reliability markedly, and reduces the total costs significantly.

A Study on the Reliability of Superconducting Fault Current Limiter (초전도한류기의 신뢰도에 관한 연구)

  • Bae, In-Su;Kim, Sung-Yul;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.101-106
    • /
    • 2011
  • The failure of cooling system in Superconducting Fault Current Limiter(SFCL) increases the impedance of superconducting device, and due to malfunction of inner switches the SFCL opens the distribution system inadvertently when required to do so. In this paper, the ground fault and short circuit fault were classified as active failure and the open circuit fault was passive failure. A reliability model of SFCL considers the passive failure as well as active failure, and in the case study the reliability indices of distribution system are evaluated. It is possible that the reliability evaluation excluded passive failure makes the customers reliability seem so worse than it really was. Therefore, the reliability models of SFCL must include the active failure and passive failure together to evaluate the reliability of distribution system connected SFCL.

Reliability Management Process for the Development of a Prototype Train (시제열차 개발에서의 신뢰성 관리 체계)

  • Choi, Sung-Hoon;Park, Choon-Soo;Lee, Tae-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.206-210
    • /
    • 2007
  • IEC 62278 presents a process to implement a consistent approach to the management of reliability for railway applications. A reliability program has to be established at the outset of a project in order to manage reliability activities effectively through the life cycle. The first step of the reliability program is to evaluate reliability requirements and targets based on the system specifications. The system specifications are derived from the customer's needs. The way in which the system requirements reflect the customer's needs is strongly dependent on the characteristics of the product. In general the customer of commercial trains presents the system requirements from their needs. However, the relation between the customer and supplier is equivocal for a project to development a prototype train, and the reliability program should be different from that of an usual commercial project. This paper deals with a process to manage reliability activities for the development of a protype train based on the experiences obtained from the development of the Korea High-Speed Train: Hanvit-350.

  • PDF

Reliability Assessment of Electric Traction System on Korea High Speed Train

  • Seo, Sung-Il;Park, Choon-Soo;Han, Young-Jae;Kim, Ki-Hwan;Park, Tae-Geun
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.233-237
    • /
    • 2004
  • In this paper, to assess and enhance the reliability of Korea High Speed Train, electric traction system is selected and reliability analysis is carried out. The electric traction system is classified into subsystems and the functional block diagram and the reliability block diagram are drawn. Expressions to calculate the reliability are deduced and Mean Kilometer Between Service Failure is calculated using the trial test results on the track. Calculated results show reliability growth of the electric traction system.

  • PDF

Parameters Estimation of Generalized Linear Failure Rate Semi-Markov Reliability Models

  • El-Gohary, A.;Al-Khedhair, A.
    • International Journal of Reliability and Applications
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • In this paper we will discuss the stochastic analysis of a three state semi-Markov reliability model. Maximum likelihood procedure will be used to obtain the estimators of the parameters included in this reliability model. Based on the assumption that the lifetime and repair time of the system units are generalized linear failure rate random variables, the reliability function of this system is obtained. Also, the distribution of the first passage time of this system will be derived. Some important special cases are discussed.

  • PDF

A Study on the Reliability of Software for Railway Signalling Systems (철도신호제어용 소프트웨어 신뢰도 모델링에 관한 연구)

  • Lee, Jae-Ho;Park, Young-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.601-605
    • /
    • 2006
  • Reliability of the Railway signaling system which is safety critical is determined by reliability of hardware and software. Reliability of hardware is easily predicted and demonstrated through lots of different studies and environmental tests, while that of software is estimated by the iterative test outcomes so estimates of reliability will depend on the inputs. Combinations of inputs to and outputs from the software may be mostly combinatoric and therefore all the combinations could not be tested. As a result, it has been more important to calculate reliability by means of a simpler method. This paper identifies the reliability prediction equation applicable to reliability prediction for railway signaling system software, and performs the simulation of onboard equipment of automatic train control for high speed train to review reliability prediction and validity.