• Title/Summary/Keyword: System Parameter Variation

Search Result 618, Processing Time 0.028 seconds

Study on the Variation of Optical Properties of Asian Dust Plumes according to their Transport Routes and Source Regions using Multi-wavelength Raman LIDAR System (다파장 라만 라이다 시스템을 이용한 발원지 및 이동 경로에 따른 황사의 광학적 특성 변화 연구)

  • Shin, Sung-Kyun;Noh, Youngmin;Lee, Kwonho;Shin, Dongho;Kim, KwanChul;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.241-249
    • /
    • 2014
  • The continuous observations for atmospheric aerosol were carried out during 3 years (2009-2011) by using a multi-wavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea ($35.11^{\circ}N$, $126.54^{\circ}E$). The particle depolarization ratios were retrieved from the observations in order to distinguish the Asian dust layer. The vertical information of Asian dust layers were used as input parameter for the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for analysis of its backward trajectories. The source regions and transport pathways of the Asian dust layer were identified. The most frequent source region of Asian dust in Korea was Gobi desert during observation period in this study. The statistical analysis on the particle depolarization ratio of Asian dust was conducted according to their transport route in order to retrieve the variation of optical properties of Asian dust during long-range transport. The transport routes were classified into the Asian dust which was transported to observation site directly from the source regions, and the Asian dust which was passed over pollution regions of China. The particle depolarization ratios of Asian dust which were transported via industrial regions of China was ranged 0.07-0.1, whereas, the particle depolarization ratio of Asian dust which was transported directly from the source regions to observation site were comparably higher and ranged 0.11-0.15. It is considered that the pure Asian dust particle from source regions were mixed with pollution particles, which is likely to spherical particle, during transportation so that the values of particle depolarization of Asian dust mixed with pollution was decreased.

Evaluation of Standardized Uptake Value applying EQ PET across different PET/CT scanners and reconstruction (PET/CT 장비와 영상 재구성 차이에 따른 EQ PET을 이용한 표준섭취계수의 평가)

  • Yoon, Seok Hwan;Kim, Byung Jin;Moon, Il Sang;Lee, Hong Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.35-42
    • /
    • 2018
  • Purpose Standardized uptake value(SUV) has been widely used as a quantitative metric of uptake in PET/CT for diagnosis of malignant tumors and evaluation of tumor therapy response. However, the SUV depends on various factor including PET/CT scanner specifications and reconstruction parameter. The purpose of this study is to validate a EQ PET to evaluate SUV across different PET/CT systems. Materials and Methods First, NEMA IEC body phantom data were used to calculate the EQ filter for OSEM3D with PSF and TOF reconstruction from three different PET/CT systems in order to obtain EARL compliant recovery coefficients of each spheres. The Biograph true point 40 PET/CT images were reconstructed with a OSEM3D+PSF reconstruction, images of the Biograph mCT 40 and Biograph mCT 64 PET/CT scanners were reconstructed with a OSEM3D+PSF, OSEM3D+TOF, OSEM3D+PSF+TOF. Post reconstructions, the proprietary EQ filter was applied to the reconstruction data. Recovery coefficient can be estimated by ratio of measured to true activity concentration for spheres of different volume and coefficient variability(CV) value of RC for each sphere was compared. For clinical study, we compared SUVmax applying different reconstruction algorithms in FDG PET images of 61 patients with lung cancer using Biograph mCT 40 PET/CT scanner. Results For the phantom studied, the mean values of CV for OSEM3D, OSEM3D+PSF, OSEM3D+TOF and OSEM3D+PSF+TOF reconstructions were 0.05, 0.04, 0.04 and 0.03 respectively for RC. Application of the proprietary EQ filter, the mean values of CV for OSEM3D, OSEM3D+PSF, OSEM3D+TOF and OSEM3D+PSF+TOF reconstructions were 0.04, 0.03, 0.03 and 0.02 respectively for RC. Clinical study, there were no statistical significance of the difference applying EQ PET on SUVmax of 61 patients FDG PET image. (p=1.000) Conclusion This study indicates that CV values of RC in phantom were decreased after applying EQ PET for different PET/CT system and The EQ PET reduced reconstruction dependent variation in SUVs for 61 lung cancer patients, Therefore, EQ PET will be expected to provide accurate quantification when the patient is scanned on different PET/CT system.

A Study of Tasseled Cap Transformation Coefficient for the Geostationary Ocean Color Imager (GOCI) (정지궤도 천리안위성 해양관측센서 GOCI의 Tasseled Cap 변환계수 산출연구)

  • Shin, Ji-Sun;Park, Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.275-292
    • /
    • 2014
  • The objective of this study is to determine Tasseled Cap Transformation (TCT) coefficients for the Geostationary Ocean Color Imager (GOCI). TCT is traditional method of analyzing the characteristics of the land area from multi spectral sensor data. TCT coefficients for a new sensor must be estimated individually because of different sensor characteristics of each sensor. Although the primary objective of the GOCI is for ocean color study, one half of the scene covers land area with typical land observing channels in Visible-Near InfraRed (VNIR). The GOCI has a unique capability to acquire eight scenes per day. This advantage of high temporal resolution can be utilized for detecting daily variation of land surface. The GOCI TCT offers a great potential for application in near-real time analysis and interpretation of land cover characteristics. TCT generally represents information of "Brightness", "Greenness" and "Wetness". However, in the case of the GOCI is not able to provide "Wetness" due to lack of ShortWave InfraRed (SWIR) band. To maximize the utilization of high temporal resolution, "Wetness" should be provided. In order to obtain "Wetness", the linear regression method was used to align the GOCI Principal Component Analysis (PCA) space with the MODIS TCT space. The GOCI TCT coefficients obtained by this method have different values according to observation time due to the characteristics of geostationary earth orbit. To examine these differences, the correlation between the GOCI TCT and the MODIS TCT were compared. As a result, while the GOCI TCT coefficients of "Brightness" and "Greenness" were selected at 4h, the GOCI TCT coefficient of "Wetness" was selected at 2h. To assess the adequacy of the resulting GOCI TCT coefficients, the GOCI TCT data were compared to the MODIS TCT image and several land parameters. The land cover classification of the GOCI TCT image was expressed more precisely than the MODIS TCT image. The distribution of land cover classification of the GOCI TCT space showed meaningful results. Also, "Brightness", "Greenness", and "Wetness" of the GOCI TCT data showed a relatively high correlation with Albedo ($R^2$ = 0.75), Normalized Difference Vegetation Index (NDVI) ($R^2$ = 0.97), and Normalized Difference Moisture Index (NDMI) ($R^2$ = 0.77), respectively. These results indicate the suitability of the GOCI TCT coefficients.

Groundwater Flow Analysis in Fractured Rocks Using Zonal Pumping Tests and Water Quality Logs (구간양수시험과 수질검층자료에 의한 균열암반내 지하수 유동 분석)

  • Hamm, Se-Yeong;Sung, Ig-Hwan;Lee, Byeong-Dae;Jang, Seong;Cheong, Jae-Yeol;Lee, Jeong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.411-427
    • /
    • 2006
  • This study aimed to recognize characteristics of groundwater flow in fractured bedrocks based on zonal pump-ing tests, slug tests, water quality logs and borehole TV camera logs conducted on two boreholes (NJ-11 and SJ-8) in the city of Naju. Especially, the zonal pumping tests using sin91e Packer were executed to reveal groundwater flow characteristics in the fractured bedrocks with depth. On borehole NJ-11, the zonal pumping tests resulted in a flow dimension of 1.6 with a packer depth of 56.9 meters. It also resulted in lower flow dimensions as moving to shallower packer depths, reaching a flow dimension of 1 at a 24 meter packer depth. This fact indicates that uniform permissive fractures take place in deeper zones at the borehole. On borehole SJ-8, a flow dimension of 1.7 was determined at the deepest packer level (50 m). Next, a dimension of 1.8 was obtained at 32 meters of packer depth, and lastly a dimension of 1.4 at 19 meters of packer depth. The variation of flow dimension with different packer depths is interpreted by the variability of permissive fractures with depth. Zonal pumping tests led to the utilization of the Moench (1984) dual-porosity model because hydraulic characteristics in the test holes were most suitable to the fractured bedrocks. Water quality logs displayed a tendency to increase geothermal temperature, to increase pH and to decrease dissolved oxygen. In addition, there was an increasing tendency towards electrical conductance and a decreasing tendency towards dissolved oxygen at most fracture zones.

Alteration Analysis of Normal Human Brain Metabolites with Variation of SENSE and NEX in 3T Multi Voxel Spectroscopy (3T Multi Voxel Spectroscopy에서 SENSE와 NEX 변화에 따른 정상인 뇌 대사물질 변화 분석)

  • Seong, Yeol-Hun;Rhim, Jae-Dong;Lee, Jae-Hyun;Cho, Sung-Bong;Woo, Dong-Chul;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.256-262
    • /
    • 2008
  • To evaluate the metabolic changes in normal adult brains due to alterations SENSE and NEX (number of excitation) by multi voxel MR Spectroscopy at 3.0 Tesla. The study group was composed of normal volunteers (5 men and 8 women) with a mean ($\pm$ standard deviation) age of 41 (${\pm}11.65$). Their ages ranged from 28 to 61 years. MR Spectroscopy was performed with a 3.0T Achieva Release Version 2.0 (Philips Medical System-Netherlands). The 8 channel head coil was employed for MRS acquisition. The 13 volunteers underwent multi voxel spectroscopy (MVS) and single voxel spectroscopy (SVS) on the thalamus area with normally gray matter. Spectral parameters were as follows: 15 mm of thickness; 230 mm of FOV (field of view); 2000 msecs of repetition time (TR); 288 msecs of echo time (TE); $110{\times}110$ mm of VOI (view of interest); $15{\times}15{\times}15$ mm of voxel size. Multi voxel spectral parameters were made using specially in alteration of SENSE factor (1~3) and 1~2 of NEX. All MRS data were processed by the jMRUI 3.0 Version. There was no significant difference in NAA/Cr and Cho/Cr ratio between MVS and SVS likewise the previous results by Ross and coworkers in 1994. In addition, despite the alterations of SENSE factor and NEX in MVS, the metabolite ratios were not changed (F-value : 1.37, D.F : 3, P-value : 0.262). However, line-width of NAA peak in MVS was 3 times bigger than that in SVS. In the present study, we demonstrated that the alterations of SENSE factor and NEX were not critically affective to the result of metabolic ratios in the normal brain tissue.

  • PDF

Estimate and Analysis of Planetary Boundary Layer Height (PBLH) using a Mobile Lidar Vehicle system (이동형 차량탑재 라이다 시스템을 활용한 경계층고도 산출 및 분석)

  • Nam, Hyoung-Gu;Choi, Won;Kim, Yoo-Jun;Shim, Jae-Kwan;Choi, Byoung-Choel;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.307-321
    • /
    • 2016
  • Planetary Boundary Layer Height (PBLH) is a major input parameter for weather forecasting and atmosphere diffusion models. In order to estimate the sub-grid scale variability of PBLH, we need to monitor PBLH data with high spatio-temporal resolution. Accordingly, we introduce a LIdar observation VEhicle (LIVE), and analyze PBLH derived from the lidar loaded in LIVE. PBLH estimated from LIVE shows high correlations with those estimated from both WRF model ($R^2=0.68$) and radiosonde ($R^2=0.72$). However, PBLH from lidar tend to be overestimated in comparison with those from both WRF and radiosonde because lidar appears to detect height of Residual Layer (RL) as PBLH which is overall below near the overlap height (< 300 m). PBLH from lidar with 10 min time resolution shows typical diurnal variation since it grows up after sunrise and reaches the maximum after 2 hours of sun culmination. The average growth rate of PBLH during the analysis period (2014/06/26 ~ 30) is 1.79 (-2.9 ~ 5.7) m $min^{-1}$. In addition, the lidar signal measured from moving LIVE shows that there is very low noise in comparison with that from the stationary observation. The PBLH from LIVE is 1065 m, similar to the value (1150 m) derived from the radiosonde launched at Sokcho. This study suggests that LIVE can observe continuous and reliable PBLH with high resolution in both stationary and mobile systems.

Correlations between the Stream Morphological Characteristics and the Hydraulic Geometry Characteristics for the Basin (유역(流域)의 하천형태학적(河川形態學的) 특성(特性)과 수리기하학적(水理幾何學的) 특성(特性)과의 상관성(相關性))

  • Ahn, Sang Jin;Yoon, Yong Nam;Kang, Kwan Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.1-17
    • /
    • 1982
  • The stream morphological characteristics of a river basin has a close correlation with the hydrological and hydraulic characteristics of the basin. In this study the correlations of flow duration and Hydraulic geometry with the stream morphological characteristics as well as the correlation between flow duration and hydraulic geometry were analyzed bases on the data for the Geum River basin. The purpose of this study was to provide the necessary informations for water utilization projects at ungauged locations along the river course. First of all, the stream morphological characteristics was analyzed based on the Horton's three laws on the morphology of a stream that is, the law of stream number, the law of average stream length and the law of average stream slope. As is the case for majority of the rivers it was found that the Geum River basin was well developed according to the Horton's laws. High correlations were also found between the basin characteristics and the channel characteristics. The flow duration curves obtained with the daily stream flow data of 10~90% frequency of occurences at the five stage gauging stations in the Geum River could, in general, be expressed as an exponential functional relationship. The concept of proportional stream ordering system was employed to describe continuously the longitudinal variation of the stream morphological characteristics, and the mathematical model was formulated for the discharge-frequency-proportional stream order relationship. With the morphological characteristics as a common parameter the relationships with flow duration, drainage area were established in mathematical expressions, respectively.

  • PDF

Analysis of the major factors of influence on the conditions of the Intensity Modulated Radiation Therapy planning optimization in Head and Neck (두경부 세기견조방사선치료계획 최적화 조건에서 주요 인자들의 영향 분석)

  • Kim, Dae Sup;Lee, Woo Seok;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • Purpose : To derive the most appropriate factors by considering the effects of the major factors when applied to the optimization algorithm, thereby aiding the effective designing of a ideal treatment plan. Materials and Methods : The eclipse treatment planning system(Eclipse 10.0, Varian, USA) was used in this study. The PBC (Pencil Beam Convolution) algorithm was used for dose calculation, and the DVO (Dose Volume Optimizer 10.0.28) Optimization algorithm was used for intensity modulated radiation therapy. The experimental group consists of patients receiving intensity modulated radiation therapy for the head and neck cancer and dose prescription to two planned target volume was 2.2 Gy and 2.0 Gy simultaneously. Treatment plan was done with inverse dose calculation methods utilizing 6 MV beam and 7 fields. The optimal algorithm parameter of the established plan was selected based on volume dose-priority(Constrain), dose fluence smooth value and the impact of the treatment plan was analyzed according to the variation of each factors. Volume dose-priority determines the reference conditions and the optimization process was carried out under the condition using same ratio, but different absolute values. We evaluated the surrounding normal organs of treatment volume according to the changing conditions of the absolute values of the volume dose-priority. Dose fluence smooth value was applied by simply changing the reference conditions (absolute value) and by changing the related volume dose-priority. The treatment plan was evaluated using Conformal Index, Paddick's Conformal Index, Homogeneity Index and the average dose of each organs. Results : When the volume dose-priority values were directly proportioned by changing the absolute values, the CI values were found to be different. However PCI was $1.299{\pm}0.006$ and HI was $1.095{\pm}0.004$ while D5%/D95% was $1.090{\pm}1.011$. The impact on the prescribed dose were similar. The average dose of parotid gland decreased to 67.4, 50.3, 51.2, 47.1 Gy when the absolute values of the volume dose-priority increased by 40,60,70,90. When the dose smooth strength from each treatment plan was increased, PCI value increased to $1.338{\pm}0.006$. Conclusion : The optimization algorithm was more influenced by the ratio of each condition than the absolute value of volume dose-priority. If the same ratio was maintained, similar treatment plan was established even if the absolute values were different. Volume dose-priority of the treatment volume should be more than 50% of the normal organ volume dose-priority in order to achieve a successful treatment plan. Dose fluence smooth value should increase or decrease proportional to the volume dose-priority. Volume dose-priority is not enough to satisfy the conditions when the absolute value are applied solely.