• Title/Summary/Keyword: System Loss Factor

Search Result 589, Processing Time 0.035 seconds

Marginal Loss Factor using Optimal Power flow in Power Market (최적조류계산을 이용한 한계손실계수의 전력시장 적용)

  • Sin, Dong-Jun;Go, Yong-Jun;Lee, Hyo-Sang;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.379-384
    • /
    • 2002
  • In the competitive electricity market, various pricing methods are developed and practiced in many countries. Among these pricing methods, marginal loss factor(MLF) can be applied to reflect the marginal cost of network losses. For the calculation of MLF, power flow method has been used to calculate system loss deviation. However, this power flow method shows some shortcomings such as necessity of regional reference node, and absence of an ability to consider network constraints like line congestion, voltage limit, and generation output limit. The former defect might affects adversely to the equity of market participants and the latter might generate an inappropriate price signals to customers and generators. To overcome these defects, the utilization of optimal power flow(OPF) is suggested to get the system loss deviation in this paper. 30-bus system is used for the case study to compare the MLF results by the power flow and the OPF method for 24-hour dispatching and pricing, Generator payment and customer charge are compared with these two methods also. The results show that MLF by OPF reflects the power system condition more faithfully than that of by the conventional power flow method

Assessment of CFD Estimation Capability for the Local Loss Coefficients of Sudden Contraction and Expansion (급격 확대 및 축소관의 압력손실계수에 대한 전산유체역학 해석의 예측성능 평가)

  • Kim, Hyun-Jung;Park, Jong-Pil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.258-264
    • /
    • 2010
  • Most of fluid systems, such as P&ID in ships, power plants, and chemical plants, consist of various components. The components such as bends, tees, sudden-expansions, sudden-contractions, and orifices contribute to overall pressure loss of the system. The local pressure losses across such components are determined using a pressure loss coefficient, k-factor, in lumped parameter models. In many engineering problems Idelchik's k-factor models have been used to estimate them. The present work compares the k-factor based on CFD calculation against Idelchik's model in order to confirm whether a commercial CFD package can be used for pressure loss coefficient estimation of complex geometries. The results show that RSM is the best appropriate for evaluating pressure loss coefficient. Commercial CFD package can be used as a tool evaluating k-factor even though the accuracy is influenced by a turbulence model.

A study on the friction head loss in flat aluminum micro multi tubes with nonazeotropic refrigerant mixtures R-410A (비공비 혼합냉매 R-410A를 적용한 납작한 알루미늄 마이크로 멀티 튜브에서의 마찰손실에 관한 연구)

  • Lee, Jeong-Kun;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.37-43
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer friction loss headby using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat enhancement factor and pressure drop penalty factor. 1) The friction head loss showed an increase as the vapor quality and mass flux increased. In case of saturation temperature, it shows an increase as it gets lower. These factors are the reason occurring as the lower the saturation temperature is, the higher the density of refrigerant vapor gets. The influence of heat flux is similar as the dryness is low, but as it gets higher, it lowers in heat flux, and as the high temperature of high heat flux, it is a factor that occurs as the density gets lower. 2) RMS error of the in case of friction head loss, it showed to be predicted as 0.45~0.67 by Chisholm, Friedel, Lockhart and Martinelli. 3) As forfriction head loss penalty factor, the smaller the aspect ratio is, the larger the penalty factor gets, and as for the effect of micro-fin, the penalty factor increased because it decreases to the gas fluid the way groove for the refrigerant's flow.

Measurement of Near Field Sound Intensity and Loss Factor Using Plate Intensity Measurement (평판 인텐시티 측정을 통한 근접장 음향 인텐시티와 손실 계수 측정법)

  • 김용조;김양한
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.589-596
    • /
    • 1997
  • A energy equation for a thin plate and surrounding fluid is derived. The equation essentially determines the relation between internal loss of thin plate, energy of acoustic radiation, and structure intensity. We attempted to use this relation to measure internal loss of thin plate. The significance of this approach is that internal loss at any point of a thin plate can be measured. The quality of this measure is dicated by the accuracy of associated measurement systems such as structure and acoustic intensity measurements. A strain gauge bridge system has been developed to measure structure intensity of thin plate. Its performance is tested by experiments.

  • PDF

Study on short period effect of Marginal Loss Factor(MLF) in Cost Based Pool (CBP시장에서 한계손실계수(MLF)의 적용에 따른 단기적 영향분석)

  • Lee, Jae-Gul;Yoon, Yong-Beum;Ahn, Nam-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.43-45
    • /
    • 2006
  • Because Cost Based Pool(CBP) has any locational signals for electricity price, there are any locational incentives for construction of new power plant high efficient. in case of Korean electricity power market, this incentives are very important to reduce loss and congestion. This Paper represent the effect of MLF(Marginal Loss Factor) as locational price signal in short period. we investigate mathematically loss reduced effect of MLF and prove to reduce transmission loss using 3bus test system.

  • PDF

A New Method to Handle Transmission Losses using LDFs in Electricity Market Operation

  • Ro Kyoung-Soo;Han Se-Young
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.193-198
    • /
    • 2005
  • This paper proposes a new method to handle transmission line losses using loss distribution factors (LDF) rather than marginal loss factors (MLF) in electricity market operation. Under a competitive electricity market, the bidding data are adjusted to reflect transmission line losses. To date the most proposed approach is using MLFs. The MLFs are reflected to bidding prices and market clearing price during the trading and settlement of the electricity market. In the proposed algorithm, the LDFs are reflected to bidding quantities and actual generations/ loads. Computer simulations on a 9-bus sample system will verify the effectiveness of the algorithm proposed. Moreover, the proposed approach using LDFs does not make any payments residual while the approach using MLFs induces payments residual.

Harmonic Distortion Contribution for the Transmission Loss Allocation in Deregulated Energy Market: A New Scheme for Industry Consumer

  • Nojeng, Syarifuddin;Hassan, Mohammad Yusri;Said, Dalila Mat;Abdullah, Md.Pauzi;Hussin, Faridah
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The industry has rapidly growth and energy supply technology advanced are become main factor which to contribute of the harmonic losses. This problem is one aspect that may affect the capability of the transmission line and also to the efficiency of electricity. This paper proposes a new scheme to allocate the cost pertaining to transmission loss due to harmonics. The proposed method, called as Generalized Harmonic Distribution Factor, uses the principle of proportional sharing method to allocate the losses among the transmission users especially for industry consumers. The IEEE 14- and 30 bus test system is used to compare the proposed method with existing method. The results showed that the proposed method provided a scheme better in allocating the cost of transmission loss, which could encourage the users to minimize the losses.

Influence of crown-to-implant ratio on periimplant marginal bone loss in the posterior region: a five-year retrospective study

  • Lee, Kyung-Jin;Kim, Yong-Gun;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.231-236
    • /
    • 2012
  • Purpose: The aim of this study was to evaluate the influence of the crown-to-implant (C/I) ratio on the change in marginal bone level around the implant and to determine the site-related factors influencing the relationship between the C/I ratio and periimplant marginal bone loss. Methods: A total of 259 implants from 175 patients were evaluated at a mean follow-up of five years. Implants were divided into two groups according to their C/I ratios: ${\leq}$ 1, and >1. Site-related factors having an influence on the relationship between C/I ratio and periimplant marginal bone loss were analyzed according to the implant location, implant diameter, implant manufacturer, prosthesis type, and guided bone regeneration (GBR) procedure. Results: It was found that 1) implants with a C/I ratio below 1 exhibited greater periimplant marginal bone loss than implants with a C/I ratio more than 1, 2) site-related factors had an effect on periimplant marginal bone loss, except for the implant system used, 3) the C/I ratio was the factor having more dominant influence on periimplant marginal bone loss, compared with implant diameter, prosthesis type, implant location, and GBR procedure, 4) implants with a C/I ratio below 1 showed greater periimplant marginal bone loss than implants with a C/I ratio greater than 1 in the maxilla, but not in the mandible, 5) and periimplant marginal bone loss was more affected by the implant system than the C/I ratio. Conclusions: Within the limitations of this study, implants with a higher C/I ratio exhibited less marginal bone loss than implants with a lower C/I ratio in the posterior regions. The C/I ratio was a more dominant factor affecting periimplant marginal bone loss in the maxilla than the mandible. Meanwhile, the implant system was a more dominant factor influencing periimplant marginal bone loss than the C/I ratio.

Investigating of a Floor-Impact Isolation System Using Damping Materials In Apartment Buildings (공동주택에서 완충재를 이용한 바닥충격음 저감 System 연구)

  • 송희수;정영;정정호;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.499-504
    • /
    • 2004
  • The purpose of this study is to investigate a investigating of a floor-impact isolation system using damping materials in apartment buildings. The stiffness elastic modulus(k) by puls impact forces were calculated loss factor by Hilbert transforms. It is absolved that natural frequency was moved floor shock-absorbing materials and the impact force was reduced by floor panel. The slab was constructed by damping materials. As towards a result, the system showed inverse A 45dB by heavy weight-impact noise and inverse A 52dB by light-impact noise. High frequencies impact-noise can be reduced by upgrading naturial frequency of vibration and noise in the system.

  • PDF

A Study on the Development and Application of a Design Program for Centrifugal Turbo Fan (원심 터보홴 설계용 프로그램의 개발 및 응용에 대한 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.71-79
    • /
    • 2016
  • This paper introduces the design method of the centrifugal turbo fan and the process of developing the design program of it. The developed design program confirmed the applicability by experimental performance data. Here, we proposed new velocity coefficients and considered various losses such as impeller inlet loss, vane passage flow loss, casing pressure loss, recirculation loss power, and disk friction loss power. Especially, the inlet and outlet widths of the impeller were newly determined by reflecting the experimental results. As a result, this fan design program shows a good performance result regardless of the types of impeller and is expected to be a very useful design tool.