• Title/Summary/Keyword: System Level Design

Search Result 4,216, Processing Time 0.03 seconds

Design and Prototype Implementation of the Curved Plates Flow Tracking and Monitoring System using RFID (RFID 기술을 이용한 곡가공 부재 추적 및 모니터링 시스템 설계 및 프로토타입의 구현)

  • Noh, Jac-Kyou;Shin, Jong-Gye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.424-433
    • /
    • 2009
  • In order to improve productivity and efficiency of ship production process, production technology converged with Information Technology can be considered. Mid-term scheduling based on long-term schedule of ship building and execution planning based on short-term production schedule have an important role in ship production processes and techniques. However, data used in the scheduling are from the experiences of the past, cognitive, and often inaccurate, moreover the updates of the data by formatted documents are not being performed efficiently. This paper designs the tracking and monitoring system for the curved plates forming process with shop level. At first step to it, we redefine and analyze the curved plates forming process by using SysML. From the definition and analysis of the curved plates forming process, we design the system with respect to operational view considering operational environment and interactions between systems included and scenario about operation, and with respect to system view considering functionalities and interfaces of the system. In order to study the feasibility of the system designed, a prototype of the system has been implemented with 13.56 MHz RHD hardware and application software.

An integrated CAD system for mold design in injection molding processes (플라스틱 사출 금형 설계를 위한 CAD시스템의 개발)

  • 이상헌;이건우;고천진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1227-1237
    • /
    • 1988
  • A practically useful CAD system for mold design in the plastic injection molding processes has been developed. Even though many efforts have been tried to simulated the injection molding process, this is the first attempt toward an automatic mold design system instead of a manufacturing or a simulation system. In this system the computational routines, the data base for mold design, and the routines for three dimensional modeling are blended together so that the designed mold is obtained as a solid model. For this development, the following problems have been solved. First, the modeling capability of the plastic parts has been implemented by incorporating the modeling routines of a constructive solid geometric modeling system and developing a constant thickness modeling conditions, and that of standard mold bases have been established. Third, the experimental know-how and the empirical formulae have been collected and blended together with the modeling routines of a geometric modeling system to provide the high level commands for designing mold.

A Design Problem of a System Working at Both Primary Service and Secondary Service (주서비스와 보조서비스를 갖는 시스템 설계)

  • Kim, Sung-Chul
    • Korean Management Science Review
    • /
    • v.28 no.3
    • /
    • pp.15-29
    • /
    • 2011
  • In this paper, we consider a system working at both primary service and secondary service. A server can switch between the primary service and the secondary service or it can be assigned to secondary service as a dedicated server. A service policy is characterized by the number of servers dedicated to the secondary service and a rule for switching the remaining servers between two services. The primary service system is modelled as a Markovian queueing system and the throughput is a function of the number of servers, buffer capacity, and service policy. And the secondary service system has a service level requirement strategically determined to perform the service assigned. There is a revenue obtained from throughput and costs due to servers and buffers. We study the problem of simultaneously determining the optimal total number of servers, buffers, and service policy to maximize profit of the system subject to both an expected customer waiting time constraint of the primary service and a service level constraint of the secondary service and develop an algorithm which can be successfully applied with the small number of computations.

Smart Service System-based Architecture Design of Smart Factory (스마트 서비스 시스템 기반 스마트 팩토리 아키텍처 설계)

  • Lee, Heeje;Lee, Joongyoon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.57-64
    • /
    • 2017
  • A new paradigm based on distributed manufacturing services is emerging. This paradigm shift can be realized by smart functions and smart technologies such as Cyber Physical System (CPS), Artificial Intelligence (AI), and Cloud Computing. Most architectures define stack levels from Level 0 (equipment) to Level 4 (business area) and specify the services to be provided between them. Because of their a rough technical specification, there is a limitation on how to actually utilize a technology to actually implement a smart factory service with this architecture. In this paper, we propose a smart factory architecture that can be utilized directly from the perspective of a smart service system by making the use of System Engineering Process and System Modeling Language (SysML).

The Study on the Failure Rate Sampling Plan Considering Cost (비용을 고려한 신뢰성 샘플링검사 설계에 관한 연구)

  • 조재립
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.59
    • /
    • pp.97-103
    • /
    • 2000
  • This study considers the design of life test sampling inspection plans by attributes for failure rate level qualification at selected confidence level. The lifetime distribution of products is assumed to be exponential. MIL-STD-690C and KS C 6032 standards provide this procedures. But these procedures have some questions to apply in the field. The cost of test and confidence level($1-{\beta}$ risk) are the problem between supplier and user. So, we suggest that the optimal life test sampling inspection plans using expected cost model considering product cost, capability, environmental test cost, etc.

  • PDF

New site classification system and design response spectra in Korean seismic code

  • Kim, Dong-Soo;Manandhar, Satish;Cho, Hyung-Ik
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A new site classification system and site coefficients based on local site conditions in Korea were developed and implemented as a part of minimum design load requirements for general seismic design. The new site classification system adopted bedrock depth and average shear wave velocity of soil above the bedrock as parameters for site classification. These code provisions were passed through a public hearing process before it was enacted. The public hearing process recommended to modify the naming of site classes and adjust the amplification factors so that the level of short-period amplification is suitable for economical seismic design. In this paper, the new code provisions were assessed using dynamic centrifuge tests and by comparing the design response spectra (DRS) with records from 2016 Gyeongju earthquake, the largest earthquake in history of instrumental seismic observation in Korea. The dynamic centrifuge tests were performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics, and the results corroborated with the new DRS. The Gyeongju earthquake records also showed good agreement with the DRS. In summary, the new code provisions are reliable for representing the site amplification characteristic of shallow bedrock condition in Korea.

A Study on Operational Optimization Based RAMS Performance Requirements Design of Railway Systems (운영기반의 철도시스템 RAMS 성능 요구사항 설계에 관한 연구)

  • Choi, Sung-ho;Kim, Gil-dong;Koo, Jeong-seo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1549-1554
    • /
    • 2018
  • Recently the design of railway systems have been performed, based on the analysis of operational conditions and service targets, it is to optimize the effectiveness and efficiency of system operation. Many RAMS requirements have been developed to transform operation conditions into system design characteristics. However, our railway industry has not actived the application of RAMS into system design performance. According to short of RAMS application, many technologies that have been developed are not only applied the existing systems that is operating, but also have not succeed to apply for new systems. In order to design the effective and efficient railway systems that are optimized to operation conditions and service targets, a systems approach and RAMS management are necessary in railway development, operation and maintenance. Therefore, in this study, the RAMS performance requirement design methods are discussed. the allocation methods from system level to each devices of subsystems.

Application and Data Architecture Design for A Pavement Asset Management System based on the Level of Service (서비스수준에 기반한 도로포장자산관리시스템의 응용 및 데이터 아키텍처 설계)

  • Choi, Won-Sik;Lim, Jong-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.919-930
    • /
    • 2011
  • National highway is one of the social infrastructures that continue to be managed in order to serve their full functions. The national highway has been managed by the Pavement Management System (PMS) until now. The PMS manages the highway as a way of facility maintenance and maximizes the service life of the highway with minimum cost. The cost is evaluated mainly with a facility manager's perspective based on engineering judgment. People's needs of quality of life have been increased as their income level is rising and naturally the opinion of citizen as a taxpayer plays an important role in determining national policy. Therefore, the contentment of a user's perspective was the starting point of addressing these needs. The Level of Service began to be used as a measure for the evaluation of the user's perspective. In this thesis we would like to design an application and a data architecture for a pavement asset management system and to show how it meets the requirements of KTAM-40 Systems.

An Integrated ECAD Library System for Standard Part Management in a Heterogeneous ECAD Environment

  • Yoo, Byung-Hoon;Lee, Hwa-Jong;Rho, Ho-Chang
    • IE interfaces
    • /
    • v.7 no.1
    • /
    • pp.67-74
    • /
    • 1994
  • In this study, we propose an integrated CAD(Computer Aided Design) library database in a heterogeneous commercial ECAD(Electronic CAD) environment. To effectively solve engineering problems focused on BOM data extraction we use a software system called schematic capture and company-wide standard electronic part information loaded on different commercial ECADs. We unify many commercial ECADs into one schematic capture and a variety of PCB(Printed Circuit Board) design tools. For this purpose we develope a model for linking CAD symbol library with company-wide standard part information. We also develope a schematic design data conversion scheme and show how to extract PBA level BOM data using our customized schematic capture. This system is being operated in an X-Window based engineering work station and commercial RDBMS base.

  • PDF

Integrating Machine Reliability and Preventive Maintenance Planning in Manufacturing Cell Design

  • Das, Kanchan;Lashkari, R.S.;Sengupta, S.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.113-125
    • /
    • 2008
  • This paper presents a model for designing cellular manufacturing systems (CMS) by integrating system cost, machine reliability, and preventive maintenance (PM) planning. In a CMS, a part is processed using alternative process routes, each consisting of a sequence of visits to machines. Thus, a level of 'system reliability' is associated with the machines along the process route assigned to a part type. Assuming machine reliabilities to follow the Weibull distribution, the model assigns the machines to cells, and selects, for each part type, a process route which maximizes the overall system reliability and minimizes the total costs of manufacturing operations, machine underutilization, and inter-cell material handling. The model also incorporates a reliability based PM plan and an algorithm to implement the plan. The algorithm determines effective PM intervals for the CMS machines based on a group maintenance policy and thus minimizes the maintenance costs subject to acceptable machine reliability thresholds. The model is a large mixed integer linear program, and is solved using LINGO. The results point out that integrating PM in the CMS design improves the overall system reliability markedly, and reduces the total costs significantly.