• Title/Summary/Keyword: System Jacobian matrix

Search Result 113, Processing Time 0.023 seconds

A new Observation Model to Improve the Consistency of EKF-SLAM Algorithm in Large-scale Environments (광범위 환경에서 EKF-SLAM의 일관성 향상을 위한 새로운 관찰모델)

  • Nam, Chang-Joo;Kang, Jae-Hyeon;Doh, Nak-Ju Lett
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • This paper suggests a new observation model for Extended Kalman Filter based Simultaneous Localization and Mapping (EKF-SLAM). Since the EKF framework linearizes non-linear functions around the current estimate, the conventional line model has large linearization errors when a mobile robot locates faraway from its initial position. On the other hand, the model that we propose yields less linearization error with respect to the landmark position and thus suitable in a large-scale environment. To achieve it, we build up a three-dimensional space by adding a virtual axis to the robot's two-dimensional coordinate system and extract a plane by using a detected line on the two-dimensional space and the virtual axis. Since Jacobian matrix with respect to the landmark position has small value, we can estimate the position of landmarks better than the conventional line model. The simulation results verify that the new model yields less linearization errors than the conventional line model.

A study on the ATC(Available Transfer Capabilily) calculation using an Energy Function Method (에너지함수법을 이용한 가용송전용량(ATC) 계산에 관한 연구)

  • Kim, Jae-Hyeon;Jeong, Sung-Won;Kim, Yong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.94-100
    • /
    • 2008
  • Available transfer capability(ATC) quantifies the viable increase in real power transfer from one point to another in a power system. ATC calculation has predominantly focussed on steady-state viability. But ATC assessment with transient stability constraints has a dominant part in overall ATC calculation. ATC assessment requires a reputation of (n-1) security assessment with constraints of thermal limits, voltage stability and dynamic stability. An estimation of determinant contingency screening method is used for computing eigenvalue of Jacobian matrix. This paper proposed a methods to ATC calculation using energy function. Constraints is used thermal limits, voltage stability and transient stability.

Computer Simulation of Dynamic Response of Vehicles on Rough Ground (노면가진에 의한 차체의 동적거동에 관한 연구)

  • 조선휘;이건우;박종근;조병관;송성재;한규진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.419-425
    • /
    • 1988
  • It would be very useful if the dynamic response of a vehicle over rough ground could be predicted at the early design stage. This became more promising with the recent progress in computer hardware and software technologies. In this study, a model of a passenger car has been developed for the analysis of its dynamic response. This model can be easily used for the other passenger cars with little modification. This passenger car was modeled to be composed of lumped masses, rigid bodies, and the suspension systems with nonlinear properties. Even though a commercial dynamic simulation program, ADAMS, was used in this study, the developed model is valid for any other simulation program. Finally, the validity of the developed model and the analysis result was verified by an experiment.

Dynamic analysis of multi-functional maintenance platform based on Newton-Euler method and improved virtual work principle

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Shi, Shanshuang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2630-2637
    • /
    • 2020
  • The structure design of divertor Multi-Functional Maintenance Platform (MFMP) actuated by hydraulic system for China Fusion Engineering Test Reactor (CFETR) was introduced in this paper. The model of MFMP was established according to maintenance requirements. In this paper, Newton-Euler method and the improved virtual work principle were used, the equivalent driving force of each actuator was obtained through the equivalent Jacobian inverse matrix derived from velocity relationship among the components. The accuracy of the model was verified by ADAMS simulation. The stability control of the heavy-duty components driven by hydraulic cylinders based on Newton-Euler method and improved virtual work principle was established.

Development of Efficient Monitoring Algorithm at EGS Site by Using Microseismic Data (미소진동 자료를 이용한 EGS 사이트에서의 효율적인 모니터링 알고리듬 개발)

  • Lee, Sangmin;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.111-120
    • /
    • 2016
  • In order to enhance the connectivity of fracture network as fluid path in enhanced/engineered geothermal system (EGS), the exact locating of hydraulic fractured zone is very important. Hydraulic fractures can be tracked by locating of microseismic events which are occurred during hydraulic fracture stimulation at each stage. However, since the subsurface velocity is changed due to hydraulic fracturing at each stage, in order to find out the exact location of microseismic events, we have to consider the velocity change due to hydraulic fracturing at previous stage when we perform the mapping of microseimic events at the next stage. In this study, we have modified 3D locating algorithm of microseismic data which was developed by Kim et al. (2015) and have developed 3D velocity update algorithm using occurred microseismic data. Eikonal equation which can efficiently calculate traveltime for complex velocity model at anywhere without shadow zone is used as forward engine in our inversion. Computational cost is dramatically reduced by using Fresnel volume approach to construct Jacobian matrix in velocity inversion. Through the numerical test which simulates the geothermal survey geometry, we demonstrated that the initial velocity model was updated by using microseismic data. In addition, we confirmed that relocation results of microseismic events by using updated velocity model became closer to true locations.

A study on convergence and stabilization of SVD damped least squares method in the triplet camera lens-system design (카메라 렌즈 설계에서 직교화 방법에 관한 연구)

  • Jung, Jung Bok;Lee, Won Gin;Kim, Kyung Chan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.1 no.1
    • /
    • pp.29-39
    • /
    • 1996
  • We studied the method which would determine the appropriate additive damping factor for the damped least sequres(DLS) optimization. We calculated eigenvalues of the product of the Jacobian matrix of error function by using the singular value decomposition(SVD) method. While suitable damping factor was appiled to the additive DLS by using SVD and Gaussian elimination method, the convergence and stability of the optimization process were examined in a triplet-type camera lens-system where the condition number is well conditioned. We compared the convergence and stability of merit function when median, maximum and minimum of eigenvalues were used as a damping factor in the optimization process. When damping factor is median of eigenvalue, the convergence and stability of merit function are more excellent than in the case of two other eigenvalues. Thus, we adopt the median of eigenvalues as an appropriate damping factor. Next, by using SVD and Gaussian elimination method, we compound the convergence and stability of optimization process for triplet-type camera lens-system design. In these two method; triplet-type camera lens-system in which condition number is well conditioned, has little improvement with the combination of DLS and SVD.

  • PDF

A Study on a Sliding Mode Control Algorithm for Dynamic Positioning System of a Vessel (선박의 동적위치유지 시스템을 위한 Sliding Mode 제어 연구)

  • Young-Shik Kim;Jang-Pyo Hong
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.256-270
    • /
    • 2023
  • In this study, a sliding mode (SM) controller for dynamic positioning (DP) was specifically designed for a turret connection operation of a ship or an offshore structure in which an arbitrary point on the structure could be controlled as the motion center instead of the center of mass. The SM controller allows control of the arbitrary point and provides capability to manage uncertainties in the dynamics of ships and offshore structures, external forces caused by unknown changing marine environments, and transient performance of DP systems. The Jacobian matrix included in kinematic equations of the controlled object was modified to design the SM controller to control based on an arbitrary point of ships or offshore structures. To ensure robustness of the controller, the Lyapunov stability theory was applied in the design of the SM controller. In general, for robustness in DP control, gain scheduling based on a proportional-derivative (PD) control algorithm is employed. However, finding appropriate gains for gain scheduling complicates the application of DP systems. Therefore, in this study, the SM control algorithm was considered to mitigate the complexity of the DP controller for ships and offshore structures. To validate the proposed SM control algorithm, time-domain simulations were conducted and utilized to evaluate the performance of the control algorithm. The effectiveness of the proposed SM controller was assessed by comparing simulation results with results of a conventional PD control algorithm applied in DP control.

Airspeed Estimation of Course Correction Munitions by Using Extended Kalman Filter (확장 칼만필터를 이용한 탄도수정탄의 대기속도 추정)

  • Sung, Jaemin;Kim, Byoung Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.405-412
    • /
    • 2015
  • This paper represents a filter design to estimate the airspeed of a spin-stabilized, trajectory-correctible artillery ammunition. Due to the limited power and space in operational point of view, the airspeed sensor is not installed, and thus the airspeed need to be estimated using limited sensor measurements. The only IMU measurements(three-axis specific forces and angular rates) are used in this application. The extended Kalman filter algorithm is applied since a linear filter can not cover the its wide operational range in airspeed and altitude. In the implementation of the EKF, the state and measurement equations are transformed into the no-roll frame for simple form of Jacobian matrix. The simulation study is conducted to evaluate the performance of the filter under various environment conditions of sensor noise and wind turbulence. In addition, the effect of the choice in filter design parameters, i.e. process error covariance matrices is analyzed on the performance of the estimation of airspeed and angular rates.

An Implicit Integration Method for Joint Coordinate Subsystem Synthesis Method (조인트 좌표계를 이용한 부분시스템 합성방법의 내재적 적분기법)

  • Jo, Jun-Youn;Kim, Myoung-Ho;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.437-442
    • /
    • 2012
  • To analyze a multibody system, this paper proposes an implicit numerical integration method for joint coordinates subsystem synthesis method. To verify the proposed method, a multibody model for an unmanned robot vehicle, which consists of six identical independent suspension systems, is developed. The symbolic method is applied to compute the system Jacobian matrix for the implicit integration method. The proposed method is also verified by performing rough terrain run-over simulation in comparison with the conventional implicit integration method. In addition, to evaluate the efficiency of the proposed method, the CPU time obtained by using this method is compared with that obtained by using the conventional implicit method.

Optimum Operation of Power System Using Fuzzy Linear Programming (퍼지 선형계획법을 적용한 전력계통의 최적운용에 관한 연구)

  • 박성대;정재길;조양행
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 1994
  • A method of optimal active and reactive power control for economic operation in electrical power system is presented in this paper. The major features and techniques of this paper are as follows: 1) The method presented for obtaining the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power Balance equation considering transmission loss, and for determining directly optimal active power allocation without repeating calculations. 2) More reasonable and economic profit by minimizing total fuel cost of thermal power plants instead of using transmission loss as objective function of reactive Power control can be achieved. 3) Particularly in reactive power control, computing time can be considerably reduced by using Fuzzy Linear Programming instead of using conventional Linear Programming.

  • PDF