• Title/Summary/Keyword: System Average Interruption Duration Index

Search Result 6, Processing Time 0.019 seconds

Assessment of Reliability in the Distribution System of an Industrial Complex

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.201-207
    • /
    • 2007
  • As the power industry moves towards open competition, there has been a need for methodology to evaluate distribution power system reliability by using customer interruption costs, particularly in power supply zones under the competitive electricity market. This paper presents an algorithm to evaluate system average interruption duration index, expected energy not supplied, and system outage cost taking into consideration failure rate of the distribution facility and industrial customer interruption cost. Also, to apply this algorithm to evaluate system outage cost presented in this paper, the distribution arrangement of a dual supply system consisting of mostly high voltage customers in an industrial complex in Korea is used as a sample case study. Finally, evaluation results of system interruption cost, system average interruption duration index, and expected energy not supplied in the sample industrial complex area are shown in detail.

A Study on the Reliability Index and Customer Density of Distribution System (배전계통의 신뢰도 지수와 수용가 밀도에 관한 연구)

  • Bae, In-Su;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1646-1650
    • /
    • 2011
  • SAIDI(System Average Interruption Duration Index) is the index that signifies the power quality of customers. SAIDI is also used to know how well utilities operate their systems. The annual interruption time in the areas that consists of widely distributed customers, is generally longer than that in the areas that consists of heavily concentrated customers. The Reliability index of huge system is not necessarily better or worse than that of small system, because SAIDI is irrelevant to the total amount of power sold or the total number of customers. This paper proposes a customer density very relevant to SAIDI. The proposed customer density is used to modify the existing SAIDI to more clearly express the service level of power supply. A modified WSAIDI(weighted SAIDI) can be a useful indicator helping utilities improve the reliability of their systems and customers evaluate the service level of receiving power.

Evaluation of Reliability and Interruption Cost of Distribution Power System in Industrial Complex (산업단지내 배전계통의 공급신뢰도 및 정전비용 평가)

  • Choi, Sang-Bong;Nam, Ki-Young;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Rhoo, Hee-Seok;Lee, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.95-96
    • /
    • 2006
  • As the power industry moves towards open competition, there has been a call for methodology to evaluate distribution power system reliability by using customer interruption costs. Accordingly, it is increased for methodology to evaluate distribution power system reliability in power supply zones under competitive electricity market. This paper presents algorithm to evaluate system average interruption duration index. expected energy not supplied and system outage cost taking Into consideration failure rate of distribution facility and industrial customer interruption cost. Also, to apply this algorithm to evaluate system outage cost presented in this paper, distribution system of a dual supply system consisting of mostly high voltage customers in industrial complex in Korea is used as a sample case study. Finally, evaluation results of system interruption cost, system average interruption duration index and expected energy not supplied in sample industrial complex area are shown in detail.

  • PDF

A Novel Investment Priority Decision Method for Facilities of Distribution Systems Considering Reliability of Distribution System (신뢰도를 고려한 배전계통 설비투자 우선순위 결정에 관한 연구)

  • Choi Jung Hwan;Park Chang Ho;Kim Kwang Ho;Jang Sung il;Cho Sung Hyeon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.545-547
    • /
    • 2004
  • This paper proposes the novel investment priority decision method for distribution facilities considering the potential failure rate and the influence of customer caused by faults in distribution networks. The Proposed method decides the investment priority of the facilities combining, by the fuzzy rules, the KEPCO's priority decision for investment and the priority decision considering SAIFI(System Average Interruption Frequency Index) and SAIDI(System Average Interruption Duration Index). To verify the performance of the proposed method, these works utilized the projects for weak facility reinforcement planned in KEPCO in the Busan region in 2003 and 2004. The evaluation results showed that the reliability of the KEPCO in the Busan region using the proposed method can be enhanced more than using the conventional KEPCO's method.

  • PDF

An Improved Investment Priority Decision Mettled for the Electrical Facilities Considering the Reliability of Distribution Networks (배전계통 신뢰도를 고려한 전기설비투자 우선순위 결정 기법)

  • Park Chang-Ho;Chae Woo-Kyu;Jang Sung-Il;Kim Kwang-Ho;Kim Jae-Chul;Park Jong-Keun;Choi Jung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.4
    • /
    • pp.177-184
    • /
    • 2005
  • This paper proposes a improved investment priority decision method of the facilities considering the reliability of distribution networks. The proposed method decides a investment order of the facilities combining, by fuzzy rules, the investment priority decision of KEPCO and the priority decision considering reliability evaluation indices. Where reliability evaluation indices are SAIFI(System Average Interruption Frequency Index) and SAIDI(System Average Interruption Duration Index), as referred to evaluation index for sustained interruption. The reliability analysis method of distribution networks applied in this paper utilizes analytic method, where the used reliability data is historical data of KEPCO. Particularly, we assumed that the failure rate increased as the equipment ages. To verify the performance of the proposed method, we applied it with the planned projects to reinforce the weak facility electrical facilities in KEPCO in 2004. The evaluation result showed that, under a limited budget, the reliability of the KEPCO in the Busan region using the proposed method can be enhanced than using the conventional KEPCO's method. Therefore, the results verify the proposed method can be efficiently used in the actual priorities method for investing the electrical facilities.

An Enhanced Investment Priority Decision of Facilities Considering Reliability of Distribution Networks

  • Choi Jung-Hwan;Park Chang-Ho;Kim Kwang-Ho;Jang Sung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.260-268
    • /
    • 2005
  • This paper proposes an improved investment pnonty decision method of facilities considering the reliability of distribution networks. The proposed method decides an investment order of the facilities combining, by fuzzy rules, the investment priority decision by KEPCO and that by reliability evaluation indices. The reliability evaluation indices are SAIFI (System Average Interruption Frequency Index) and SAIDI (System Average Interruption Duration Index). The reliability analysis method of distribution networks applied in this paper utilizes the analytic method, where the used reliability data is the historical data of KEPCO. Particularly, we assumed that the failure rate increases as the equipment ages. To verify the performance of the proposed method, we applied it with the planned projects to reinforce the weak electrical facilities in KEPCO in 2004. The evaluation result showed that, under a limited budget, the reliability of KEPCO in the Busan region using the proposed method could be enhanced if used rather than the conventional method typically in place. Therefore, the results verify that the proposed method can be efficiently used in the actual priorities method for investing in the electrical facilities.