• Title/Summary/Keyword: Synthetic loading

Search Result 117, Processing Time 0.023 seconds

Development of Multi-sample Loading Device for TEM Characterization of Hydroxyapatite Nanopowder

  • Lee, Jong-Moon;Kim, Jung-Kyun;Jeong, Jong-Man;Kim, Jin-Gyu;Lee, Eunji;Kim, Youn-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.788-792
    • /
    • 2013
  • A shortcoming of using transmission electron microscopy (TEM) for structural analysis via electron diffraction is the relatively large error of the measurements as compared to X-ray diffraction. To reduce these errors, various internal standard methods from earlier studies have been widely used. We developed a new device to facilitate the application of internal standard methods in preparation of TEM grids used for nanopowder analysis. Through the application of a partial mask on the TEM grid, both the internal standards and the research materials can be loaded on the same grid. Through this process, we conducted a TEM analysis that compared synthetic hydroxyapatite (HAp) nanopowder to bone apatite from a bovine femur. We determined that the accuracy of the d-spacing measurements of the HAp and bone powders could be improved to better than 1% after statistical treatments of the experimental data. By applying a quarter mask, we loaded four different nanoparticles on a single TEM grid, with one section designated for the internal standard.

Nitrate Removal in a Packed Bed Reactor Using Volatile Fatty Acids from Anaerobic Acidogenesis of Food Wastes

  • Lim, Seong-Jin;Ahn, Yeong-Hee;Kim, Eun-Young;Chang, Ho-Nam
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.538-543
    • /
    • 2006
  • A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from $0.50\;to\;1.01\;kg\;N/m^{3}{\cdot}d$, the PBR exhibited $100{\sim}98.8%\;NO_{3}^{-}-N$ removal efficiencies and nitrite concentrations in the effluent ranged from $0\;to\;0.6\;NO_{2}^{-}-N\;mg/L$. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than $1.01\;kg\;N/m^{3}{\cdot}d$, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.

Application of a Membrane Bioreactor in Denitrification of Explosives Hydrolysates (Membrane Bioreactor를 이용한 폭발성 물질의 가수분해 부산물의 탈질과정에의 적용)

  • Zoh, Kyung-Duk
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • A bench-scale anoxic membrane bioreactor (MBR) system, consisting of a bioreactor coupled to a ceramic crossflow ultrafiltration module, was evaluated to treat a synthetic wastewater containing alkaline hydrolysis byproducts (hydrolysates) of RDX, The wastewater was formulated the same as RDX hydrolysates, and consisted of acetate, formate, formaldehyde as carbon sources and nitrite, nitrate as electron accepters. The MBR system removed 80 to 90% of these carbon sources, and approximately 90% of the stoichiometric amount of nitrate, 60% of nitrite. The reactor was also operated over a range of transmembrane pressures, temperatures, suspended solids concentration, and organic loading rate in order to maximize treatment efficiency and permeate flux. Increasing transmembrane pressure and temperature did not improve membrane flux significantly. Increasing biomass concentration in the bioreactor decreased the permeate flux significantly. The maximum volumetric organic loading rate was $0.72kg\;COD/m^3/day$, and the maximum F/M ratio was 0.50 kg N/kg MLSS/day and 1.82 kg COD/kg MLSS/day. Membrane permeate was clear and essentially free of bacteria, as indicated by heterotrophic plate count. Permeate flux ranged between 0.15 and $2.0m^3/m^2/day$ and was maintained by routine backwashing every 3 to 4 day. Backwashing with 2% NaOCl solution every fourth or fifth backwashing cycle was able to restore membrane flux to its original value.

Flexural Performance of Cement Treated Clay-Sand Mixtures Reinforced with Synthetic Fibers (합성섬유로 보강된 시멘트-점토-모래 혼합토의 휨성능 평가에 관한 연구)

  • Jung, Du-Hwoe;Cho, Baik-Soon;Lee, Yong-Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.19-29
    • /
    • 2017
  • The effects of synthetic fibers, cement content, and sand content on the flexural performance of cement-clay-sand mixtures has been evaluated through a flexural performance test with a third-point loading. Beam specimens for the flexural performance test were fabricated with a various amount of cement, sand, and synthetic fibers. Two types of fibers, PVA (Polyvinyl alcohol) and PP (Polypropylene) fibers, were employed in the test. The test results have exhibited that the factors considered in the test have significant effects on the flexural performance of the mixtures in several aspects. The flexural performance of the mixtures has been improved if the mixtures were reinforced with synthetic fibers. The flexural strength and the flexural toughness of the mixtures has been increased as the fiber content was increased. A multiple linear regression analysis has been performed to evaluate the effect of fiber content, cement dosage, and sand content on the flexural performance of the mixtures in terms of flexural strength and flexural toughness. Cement content and sand content were estimated as important factors to have an influence on the first-crack strength and the peak strength whereas the fiber content has the most significant influence on the post-crack behavior. The first-crack strength and the ultimate strength were increased as the cement content and the sand content were increased. As the fiber content was increased, the flexural toughness was increased.

Simultaneous Nitrification and Denitrification using Submerged MBR packed with Granular Sulfur and Non-woven Fabric (부직포 및 황 충진 MBR을 이용한 포기조내 동시 질산화/탈질에 관한 연구)

  • Moon, Jin-Young;Hwang, Yong-Woo;Park, Ji-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.439-446
    • /
    • 2009
  • This study was performed to evaluate SND(simultaneous nitrification and denitrification)efficiency, nitrogen removal efficiency and filtration function of non-woven fabric by using submerging MBR packed with granular sulfur covered with non-woven fabric filter. Synthetic wastewater was used as influent wastewater. Concentration of $NH_4{^+}-N$ in influent was maintained about 40 mg/L and the experiment was performed in four phases according to the flow rate. Nitrogen loading rate divided four phases ranging from $0.04 kg\;NH_4{^+}-N/m^3-day$ to $0.16 kg\;NH_4{^+}-N/m^3-day$. As a result, the maximum $NH_4{^+}-N$ removal rate was accomplished at $0.142 kg\;NH_4{^+}-N/m^3-day$ in nitrogen loading of $0.147 kg\;NH_4{^+}-N/m^3-day$. Nitrification efficiency was higher than 95% in all phases. $NO_3{^-}-N$ loading rate was adjusted ranging from $0.22 kg\;NO_3{^-}-N/m^3-day$ to $0.89 kg\;NO_3{^-}-N/m^3-day$. The maximum $NO_3{^-}-N$ removal rate was accomplished up to $0.71 kg\;NO_3{^-}-N/m^3-day$ in $NO_3{^-}-N$ loading of $0.89 kg\;NO_3{^-}-N/m^3-day$. The maximum $NO_3{^-}-N$ removal efficiency was 95% in $NO_3{^-}-N$ loading of $0.22 kg\;NO_3{^-}-N/m^3-day$. T-N removal rate was 90% and concentration of T-N in effluent was 3.7 mg/L in T-N loading rate of $0.039 kg\;NO_3{^-}-N/m^3-day$. In this study, TMP in reactor with and without non-woven fabric filter were observed to define fouling of hollow-fiber membrane module. Reaching time to standard washing pressure(22 cm Hg) of two reactors were 29 days with non-woven fabric But the reactor without non-woven fabric reached standard washing pressure only after 4 days. Accordingly, non-woven fabric was demonstrated the superiority as a filtration ability. With high nitrogen removal rate and decreasing of fouling of membrane, MBR packed with granular sulfur covered with non-woven fabric filter submerging in activated sludge aeration tank can be used as an advanced treatment process.

Removal of Organic and Nutrients in Fish Market Wastewater using Sequencing Batch Reactor (SBR) (SBR공정을 이용한 수산물 위판장 폐수에서 유기물 및 질소 제거)

  • Kim, Sung-Ju;Lee, Dae-Hee;Park, Hung-Suck
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • This research work aims at treating saline wastewater generated from a fish market using four Sequencing Batch Reactors (SBR) operated under different conditions. The effect of C/N ratio (3, 6) and salt concentration (0.5~2%) on organic and nitrogen removal was studied. The synthetic wastewater prepared with glucose ($C_6H_{12}O_6$) as the primary carbon source along with ammonium chloride ($NH_4Cl$) was used in the three reactors. The fill, anoxic, aeration, settle and draw conditions were 2 hr, 4 hr, 4 hr and 2 hr respectively. The fourth reactor was operated at different conditions to investigate the practical feasibility of SBR application to handle fish market wastewater generated in Ulsan city that had fluctuating loading characteristics. Though the unacclimated sludge was initially affected by the salt concentration, the acclimated sludge removed 95% of the organics irrespective of the NaCl concentration and C/N ratio. However, the removal of nitrogen was affected more by C/N ratio than the salt concentration. While handling fish market wastewater, though the organic and nitrogen loading rate were varying between $0.009{\sim}0.259gCOD_{OH}/gVSS/day$ and 0.005~0.034 gN/gVSS/day, the effluent concentrations were far less than the effluent standard of $120mgCOD_{OH}/L$ and 60 mgN/L respectively, except when loading rates were fluctuating and 4 times higher than the average.

Biological Treatemnt of Dye Wastewater Using an Anaerobic-Aerobic System (혐기-호기 공정을 이용한 염료페수의 생물학적 처리)

  • 박영식;문정현;안갑환
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.569-576
    • /
    • 2002
  • Anaerobic/aerobic reactor system was used to treat a synthetic wastewater with glucose as carbon sources(0.38~2.29 kg COD/m3.day) and Acid Red 14(1.05 "24.00 g Acid Red 141m3.day, color degree of 570 ~ 1710). COD removal efficiency by the anaerobic stage in operation period were above 90 % organic loading rate of 0.38 ~ 2.29 kg COD/m3.day(except, adaptation period) and the removal efficiency of the whole system were above 96 %. The decolorization of the Acid Red 14 was through the alteration of the dye structure(or cleavage of the Azo bond) during the anaerobic treatment. In the A/A system, the anaerobic stage played an essential role in removing both color and COD. In addition it also improves biodegradability of dye f3r further aerobic treatment. After operation, average MLSS concentration of anaerobic sludge reactor, anaerobic fixed-bed reactor and aerobic fixed-bed reactor were 17100mg/L, 20000mg/L, and 10000mg/L, respectively.

Mixing effect on organic removal efficiency in treating low-strength wastewater using a modified anaerobic filter reactor (변형 혐기성 여상 반응조에서 교반강도가 유기물 제거효율에 미치는 영향)

  • 정병곤;이헌모
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.513-524
    • /
    • 1996
  • Laboratory investigation was conducted to evaluat the mixing effects on organic removal efficiency to treat low-strength synthetic wastewater using modified anaerobic - filter reactor combining anaerobic filter and upflow anaerobic sludge blanket. Using the modified process the low-strength wastewater like municipal sewage could be treated with 85% T-COD removal efficiency at hydraulic retention time of 6 hours. At the constant organic loading of 0.5 kg COD/m 3-day, the organic removal efficiency and effluent COD concentration are increased as influent COD concentration increased from 125 mg/l to 500 mg/l. Mixing effects on organic removal efficiency are evident and optimum mixing speed is found as 50RPM. Placing the granular sludge and media on which slime layer was pre-formed into the reactor seemed to be very effective In achieving short start-up period. Therefore, the steady state was achived after 4 weeks and 1 week based on T-COD and S-COD, respectively.

  • PDF

Performance of Organic Treatment with Shape Modify of Ceramic Support Carrier (담체 모양변화에 따른 유기물 처리 성능 고찰)

  • 박영식;안갑환
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.27-34
    • /
    • 2001
  • This paper discussed the shape effect of ceramic support carrier in order to facilitate biomass immobilization. The shape of ceramic support carrier was modified hollow pipe type into hollow gear type. After seeding, microorganisms were attached in crevices where protection from shear forces or surfaces where easy to contact with support carrier surface. In case of hollow gear type carrier, initial attachment rate was faster than that of hollow pipe type and obtained thick biofilm. Synthetic wastewater(COD:75~880 mg/L, organic loading rate:0.36~4.22 kgCOD/㎥.d) was treated aerobic fixed bed biofilm reactor where 100% of the volume was filled with the ceramic carrier. COD removal efficiency of reactor filled with gear type support carrier was a little high withing 70 days, and then showed similar removal efficiency. It was found that highly loaded operation with up to 4.22 kgCOD/㎥.d was possible in both reactor. Total biomass amounts of pipe type was higher than gear type, however, attached biomass of gear type was higher than that of pipe type.

  • PDF

Properties of CB/SBR Rubber Composites Filled by Carbon Blacks Used as Catalysts for Hydrogen Production through Hydrocarbon Decomposition

  • Dai, Shuangye;Ao, Gyeou;Kim, Myung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.392-395
    • /
    • 2006
  • In this work, the reinforcing action of carbon blacks in rubber was investigated by SEM and UTM measurements which at low a testing of the surface and mechanical properties. In order to gain an insight into the different properties between carbon blacks before and after methane/propane decomposition, various composites were prepared with SBR synthetic rubber and different carbon blacks with four loading ratios. The results were analyzed with the aim of finding suitable conditions for decomposition reaction to cut down the net cost for hydrogen production through hydrocarbon decomposition.

  • PDF