• Title/Summary/Keyword: Synthetic images

Search Result 573, Processing Time 0.022 seconds

Synthetic Computed Tomography Generation while Preserving Metallic Markers for Three-Dimensional Intracavitary Radiotherapy: Preliminary Study

  • Jin, Hyeongmin;Kang, Seonghee;Kang, Hyun-Cheol;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • Purpose: This study aimed to develop a deep learning architecture combining two task models to generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) images to improve metallic marker visibility. Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) were retrospectively enrolled, and images were acquired using both a computed tomography (CT) scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR images using a deformable registration, and the metallic dummy source markers were delineated using threshold-based segmentation followed by manual modification. The deformed CT (dCT), MR, and segmentation mask pairs were used for training and testing. The sCT generation model has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT images and segments the metallic marker. The performance of the model was evaluated with intensity-based comparison metrics. Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of errors between the sCT and dCT. The structural similarity score difference was not significant. Conclusions: Our study shows the two-task-based deep learning models for generating the sCT images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only workflow in high-dose-rate brachytherapy.

Synthetic Image Generation for Military Vehicle Detection (군용물체탐지 연구를 위한 가상 이미지 데이터 생성)

  • Se-Yoon Oh;Hunmin Yang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.392-399
    • /
    • 2023
  • This research paper investigates the effectiveness of using computer graphics(CG) based synthetic data for deep learning in military vehicle detection. In particular, we explore the use of synthetic image generation techniques to train deep neural networks for object detection tasks. Our approach involves the generation of a large dataset of synthetic images of military vehicles, which is then used to train a deep learning model. The resulting model is then evaluated on real-world images to measure its effectiveness. Our experimental results show that synthetic training data alone can achieve effective results in object detection. Our findings demonstrate the potential of CG-based synthetic data for deep learning and suggest its value as a tool for training models in a variety of applications, including military vehicle detection.

A Reduction of Grating Lobe By Using the Multi-element Receive Synthetic Focusing In Ultrasonic Image (초음파 영상에서 Multi-element Receive Synthetic Focusing을 이용한 그레이팅 로브 감축)

  • Lee, J.S.;Ahn, Y.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.559-562
    • /
    • 1997
  • In this paper, we propose the method that reduce the grating lobe in the ultrasound synthetic focusing images. synthetic focusing images have more larger and closer grating lobe than conventional phased array images and more lower signal to noise ratio. so, we represent the method that reduce the grating lobe by using multi element receive focusing. experimental results are showed that the proposed multi element receiving method reduce the grating lobe and increase the signal to noise ratio.

  • PDF

Improve object recognition using UWB SAR imaging with compressed sensing

  • Pham, The Hien;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.76-82
    • /
    • 2021
  • In this paper, the compressed sensing basic pursuit denoise algorithm adopted to synthetic aperture radar imaging is investigated to improve the object recognition. From the incomplete data sets for image processing, the compressed sensing algorithm had been integrated to recover the data before the conventional back- projection algorithm was involved to obtain the synthetic aperture radar images. This method can lead to the reduction of measurement events while scanning the objects. An ultra-wideband radar scheme using a stripmap synthetic aperture radar algorithm was utilized to detect objects hidden behind the box. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to transmit and receive signal data of two conductive cylinders located inside the paper box. The results confirmed that the images can be reconstructed by using a 30% randomly selected dataset without noticeable distortion compared to the images generated by full data using the conventional back-projection algorithm.

Design and Verification of Spacecraft Pose Estimation Algorithm using Deep Learning

  • Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.61-78
    • /
    • 2024
  • This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.

Analysis method of signal model for synthetic aperture integral imaging (합성 촬영 집적 영상의 신호 모델 해석 방법)

  • Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2563-2568
    • /
    • 2010
  • SAII (synthetic aperture integral imaging) is a useful technique to record many multi view images of 3D objects by using a moving camera and to reconstruct 3D depth images from the recorded multiviews. This is largely composed of two processes. A pickup process provides elemental images of 3D objects and a reconstruction process generates 3D depth images computationally. In this paper, a signal model for SAII is presented. We defined the granular noise and analyzed its characteristics. Our signal model revealed that we could reduce the noise in the reconstructed images and increase the computational speed by reducing the shifting distance of a single camera.

Dosimetric Evaluation of Synthetic Computed Tomography Technique on Position Variation of Air Cavity in Magnetic Resonance-Guided Radiotherapy

  • Hyeongmin Jin;Hyun Joon An;Eui Kyu Chie;Jong Min Park;Jung-in Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.142-149
    • /
    • 2022
  • Purpose: This study seeks to compare the dosimetric parameters of the bulk electron density (ED) approach and synthetic computed tomography (CT) image in terms of position variation of the air cavity in magnetic resonance-guided radiotherapy (MRgRT) for patients with pancreatic cancer. Methods: This study included nine patients that previously received MRgRT and their simulation CT and magnetic resonance (MR) images were collected. Air cavities were manually delineated on simulation CT and MR images in the treatment planning system for each patient. The synthetic CT images were generated using the deep learning model trained in a prior study. Two more plans with identical beam parameters were recalculated with ED maps that were either manually overridden by the cavities or derived from the synthetic CT. Dose calculation accuracy was explored in terms of dose-volume histogram parameters and gamma analysis. Results: The D95% averages were 48.80 Gy, 48.50 Gy, and 48.23 Gy for the original, manually assigned, and synthetic CT-based dose distributions, respectively. The greatest deviation was observed for one patient, whose D95% to synthetic CT was 1.84 Gy higher than the original plan. Conclusions: The variation of the air cavity position in the gastrointestinal area affects the treatment dose calculation. Synthetic CT-based ED modification would be a significant option for shortening the time-consuming process and improving MRgRT treatment accuracy.

Calibration and Validation System for Synthetic Aperture Radar Satellite (영상레이더 위성을 위한 검보정 시스템)

  • Shin, Jae-Min;Jeong, Ho-Ryung;Lee, Kwang-Jae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.98-104
    • /
    • 2010
  • The demand for Satellite Images is continuously increasing owing to the various applications of optical satellite images. However, the acquisition of optical images has a limitation due to problems of weather and day & night. because an optical satellite makes images with reflections of sunlight. Therefore, SAR Satellite, which uses electromagnetic waves to make an image, gives increased demand to various applications. It also makes increased interest. In this paper, a calibration and validation system, which is an essential element for high quality Radar images, is studied.

  • PDF

Target-to-Clutter Ratio Enhancement of Images in Through-the-Wall Radar Using a Radiation Pattern-Based Delayed-Sum Algorithm

  • Lim, Youngjoon;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.405-410
    • /
    • 2014
  • In this paper, we compare the quality of images reconstructed by a conventional delayed-sum (DS) algorithm and radiation pattern-based DS algorithm. In order to evaluate the quality of images, we apply the target-to-clutter ratio (TCR), which is commonly used in synthetic aperture radar (SAR) image assessment. The radiation pattern-based DS algorithm enhances the TCR of the image by focusing the target signals and preventing contamination of the radar scene. We first consider synthetic data obtained through GprMax2D/3D, a finite-difference time-domain (FDTD) forward solver. Experimental data of a 2-GHz bandwidth stepped-frequency signal are collected using a vector network analyzer (VNA) in an anechoic chamber setup. The radiation pattern-based DS algorithm shows a 6.7-dB higher TCR compared to the conventional DS algorithm.

ISAR Imaging of a Real Aircraft Using KOMSAR (KOMSAR를 이용한 실제 항공기 ISAR 영상 제작)

  • Kim, Kyung-Tae;Jeong, Ho-Ryung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.717-722
    • /
    • 2007
  • Inverse synthetic aperture radar(ISAR) images represent two-dimensional(2-D) spatial distribution of electromagnetic scattering phenomenology against a target. Hence, they are usually used in the areas of automatic target recognition (ATR) or non-cooperative target recognition(NCTR), identifying a target using radar in a long distance. This paper makes use of Korea Miniature Synthetic Aperture Radar(KOMSAR) to generate ISAR images of a real and maneuvering aircraft. The data obtained from KOMSAR are processed to eliminate phase errors due to motion of a target, with the use of entropy-based ISAR autofocusing technique. Results show that we can successfully obtain ISAR images of a real aircraft, and the success of experiments implies that a significant step toward ATR using radar has been established.