• Title/Summary/Keyword: Synthetic heterodyne

Search Result 4, Processing Time 0.295 seconds

Synthetic-heterodyne interferometry for measuring extremely small amplitude of mechanical vibrations (미소 진폭 기계진동의 Synthetic-heterodyne 간섭측정에 대한 연구)

  • Kang, Seong-Gu;La, Jong-Pil;Yoon, Hee-Sun;Park, Kyi-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.373-378
    • /
    • 2007
  • On the homodyne interferometers, high pass filter(HPF) is usually used to remove the electrical noise in the interferent signal. Heterodyne interferometer has modulating frequency is shifted in the frequency region where the electrical noise effect is minimized by HPF effect. However, on the homodyne interferometer, the interferent DC-component of homodyne interferometer is unfortunately eliminated by using a HPF because its shifted frequency does not exist. Moreover, this effect is more serious the vibration amplitude is smaller. So, when unstable interferent signals via HPF are demodulated, a velocity is distorted. In this work, the mathematical explanation for the distortion of the homodyne interferent signal using the HPF is given. New synthetic heterodyne LDV based on the homodyne interferometer by exciting the reference mirror is proposed for the cancellation of the distortion. The optimum excitation condition of the mirror to compensate the distortion is discussed. The numerical simulation using the commercial MATLAB code is provided to show the effect of the proposed synthetic heterodyne LDV. The experimental results are also given and the effect of the proposed LDV is discussed.

  • PDF

Characteristics of 2-Channel TDM fiber-optic sensor array (TDM 방식의 2채널 광섬유 센서 배열 특성 연구)

  • Lee, Jong-Kil
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.306-312
    • /
    • 1998
  • To develop the multi-channel fiber-optic sensor array system, two-channel TDM(Time Division Multiplexing) fiber-optic sensor array was constructed and characterized. The sensor array topology was Mach-Zehender ladder type and PMDI(Phase-Matched Differential Interferometer) technique was used to exploit the efficiency of the array signal processing. By using a synthetic heterodyne demodulation technique, outputs of the two channels were monitored simultaneously. The sensitivities of channel #1 and #2 were measured ${\sim}60{\mu}rad/\sqrt{Hz}$ and ${\sim}80{\mu}rad/\sqrt{Hz}$, respectively. Crosstalk of sensors in the array was found to be approximately -36dB. Based on the results, we could conclude that TDM Mach-Zehnder ladder type sensor array can be used to detect the acoustic signal with stability and efficiency of the sensor array.

  • PDF

Precision Length Metrology using the Optical Comb of Femtosecond Pulse Lasers (펨토초 레이저의 주파수 모드를 이용한 정밀 길이 측정)

  • Jin Jong-Han;Kim Young-Jin;Kim Seung-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.216-219
    • /
    • 2005
  • In precision length measurements using optical interferometry based on homodyne or heterodyne principles, it is crucial to have frequency-stabilized monochromatic light sources. To the end, we investigate the possibility of utilizing the optical comb constituted by ultrashort femtosecond pulse lasers generated from a gain medium of titanium-doped aluminium oxide $(Ti:Al_2O_3)$. The optical comb is stabilized by locking to the caesium atomic clock, which allows all the modes of the comb to maintain an extremely high level of frequency stabilization to precision of one part in $10^{16}$. Then, high precision length measurements are realized by extracting a single or group of particularly wanted optical frequency components or by adopting a third-party light source locked to the comb. Required measurement system setup will be presented in detail along with experimental results.

  • PDF