• Title/Summary/Keyword: Synthetic drugs

Search Result 124, Processing Time 0.031 seconds

Improved Production of Medium-Chain-Length Polyhydroxyalkanoates in Glucose-Based Fed-Batch Cultivations of Metabolically Engineered Pseudomonas putida Strains

  • Poblete-Castro, Ignacio;Rodriguez, Andre Luis;Lam, Carolyn Ming Chi;Kessler, Wolfgang
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.59-69
    • /
    • 2014
  • One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains that can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch strategies in the performance of metabolically engineered Pseudomonas putida strains, ${\Delta}gcd$ and ${\Delta}gcd-pgl$, for improving production of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glucose as the only carbon source. First we developed a fed-batch process that comprised an initial phase of biomass accumulation based on an exponential feeding carbon-limited strategy. For the mcl-PHA accumulation stage, three induction techniques were tested under nitrogen limitation. The substrate-pulse feeding was more efficient than the constant-feeding approach to promote the accumulation of the desirable product. Nonetheless, the most efficient approach for maximum PHA synthesis was the application of a dissolved-oxygen-stat feeding strategy (DO-stat), where P. putida ${\Delta}gcd$ mutant strain showed a final PHA content and specific PHA productivity of 67% and $0.83g{\cdot}l^{-1}{\cdot}h^{-1}$, respectively. To our knowledge, this mcl-PHA titer is the highest value that has been ever reported using glucose as the sole carbon and energy source. Our results also highlighted the effect of different fed-batch strategies upon the extent of realization of the intended metabolic modification of the mutant strains.

Evidence-Based Benefit-Risk Assessment of Medication (근거에 기반한 의약품의 유익성-위해성 평가)

  • Lee, Eui-Kyung
    • The Journal of Health Technology Assessment
    • /
    • v.1 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • Objectives: Balancing benefits and risks through the drug life cycle has been discussed for many decades. The objective of this study was to review the processes and tools currently proposed for benefit-risk assessment of medicinal drugs. It aimed to establish scientific and efficient drug safety management system based on the synthetic analysis of benefit-risk evidence. Methods: We conducted a review of exiting literatures published by regulatory agencies or initiatives. Not only quantitative methodologies but also qualitative method were compared to understand their key characteristics for the benefit and risk assessment of drugs. Results: Recently, benefit-risk assessments have more structured approaches to decision making as part of regulatory science. Regulatory agencies such as European Medicines Agency, FDA have prepared plans to apply benefit-risk assessment to regulatory decision making. Also many initiatives such as IMI (Innovative Medicine Initiative) have conducted research and published reports about benefit-risk assessment. For benefit-risk assessment, four kinds of methods are necessary. Frameworks such as BRAT (Benefit Risk Action Team) framework, PrOACT-URL provide guidance for the whole process of decision-making. Metrics are measurements of risk benefit. The estimation techniques are methods to synthesis and combine evidences from various sources. The utility survey techniques are necessary to explicit preferences of various outcome from stakeholders. Conclusion: There is the lack of widely accepted, validated model for benefit-risk assessment. Nor there is an agreement among academia, industry, and government on methods for the quantitative valuation. It is also limited by available evidence and underlying assumptions. Nevertheless, benefit-risk assessment is fundamental to improve transparency, consistency and predictability for decision making through the structured systematic approaches.

Hydroxylation of Compactin (ML-236B) by CYP105D7 (SAV_7469) from Streptomyces avermitilis

  • Yao, Qiuping;Ma, Li;Liu, Ling;Ikeda, Haruo;Fushinobu, Shinya;Li, Shengying;Xu, Lian-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.956-964
    • /
    • 2017
  • Compactin and pravastatin are competitive cholesterol biosynthesis inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase and belong to the statin drugs; however, the latter shows superior pharmacokinetic characteristics. Previously, we reported that the bacterial P450, CYP105D7, from Streptomyces avermitilis can catalyze the hydroxylation of 1-deoxypentalenic acid, diclofenac, and naringenin. Here, we demonstrate that CYP105D7 could also catalyze compactin hydroxylation in vitro. In the presence of both bacterial and cyanobacterial redox partner systems with an NADPH regeneration system, the reaction produced two hydroxylated products, including pravastatin (hydroxylated at the C6 position). The steady-state kinetic parameters were measured using the redox partners of putidaredoxin and its reductase. The $k_m$ and $k_{cat}$ values for compactin were $39.1{\pm}8.8{\mu}M$ and $1.12{\pm}0.09min^{-1}$, respectively. The $k_{cat}/K_m$ value for compactin ($0.029min^{-1}{\cdot}{\mu}M^{-1}$) was lower than that for diclofenac ($0.114min^{-1}{\cdot}{\mu}M^{-1}$). Spectroscopic analysis showed that CYP105D7 binds to compactin with a $K_d$ value of $17.5{\pm}3.6{\mu}M$. Molecular docking analysis was performed to build a possible binding model of compactin. Comparisons of different substrates with CYP105D7 were conclusively illustrated for the first time.

Effect on the Inhibition of DNA-PK in Breast Cancer Cell lines(MDA-465 and MDA-468) with DNA-PKcs Binding Domain Synthetic Peptide of Ku80 (Ku80의 DNA-PKcs 결합부위 합성 Peptide 투여에 의한 유방암세포의 DNA-dependent protein kinase 억제 효과)

  • 김충희;김태숙;문양수;정장용;강정부;김종수;강명곤;박희성
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • DNA double-strand break (DSB) is a serious treat for the cells including mutations, chromosome rearrangements, and even cell death if not repaired or misrepaired. Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) bound to double strand DNA breaks are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and the interaction is essential for DNA-dependent protein kinase (DNA-PK) activity. The Ku80 mutants were designed to bind Ku70 but not DNA end binding activity and the peptides were treated in breast cancer cells for co-therapy strategy to see whether the targeted inhibition of DNA-dependent protein kinase (DNA-PK) activity sensitized breast cancer cells to ionizing irradiation or chemotherapy drug to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. We designed domains of Ku80 mutants, 26 residues of amino acids (HN-26) as a control peptide or 38 (HNI-38) residues of amino acids which contain domains of the membrane-translocation hydrophobic signal sequence and the nuclear localization sequence, but HNI-38 has additional twelve residues of peptide inhibitor region. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, resulting in inactivation of DNA-PK complex activity in breast cancer cells (MDA-465 and MDA-468). Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to irradiation or chemotherapy drugs. The growth of breast cancer cells was also inhibited. These results demonstrate the possibility of synthetic peptide to apply breast cancer therapy to induce apoptosis of cancer cells.

Altered Gene Profiles using KISTCHIP-400 in MCF-7 cells after Exposure to Di(2-ethylhexyl) Phthalate (DEHP) and Dibutyl Phthalate (DBP)

  • Yun, Hye-Jung;Kim, Youn-Jung;Kim, Eun-Young;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.174-174
    • /
    • 2003
  • There are many synthetic chemicals, such as di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP), used in chemical reaction processes in industry. The establishment of toxicity and detection of synthetic chemicals that may pose a genetic hazard in our enviornment is subjects of great concern at present DEHP, a ubiquitous phthalate plasticizer, induces a wide range of developmental and reproductive toxicities in mammals. DEHP belongs to the large diverse class of peroxisome proliferator compounds, which include herbicides, hypolipidemic drugs. DBP is a plasticizer used to products containing nitrocellulose, polyvinyl acetate, and polyvinyl chloride such as food wraps and blood bags. DBP is also used in cosmetics as a solvent and fixative for perfumes, a suspension agent for solids, an antifoamer, a skin emollient, and hair spray The present study was performed to examine patterns of gene expression in MCF-7 cells following DEHP and DBP exposure. Changes in gene expression were determined by microarray analysis using KISTCHIP-400 including 401 endocrine related genes based on public database and research papers. Of the genes analysis, we determined that genes detected by array showed a 2-fold or greater change in their expression level(increase or decrease). The results of this study demonstrate that a number of genes were differentially expressed in MCF-7 cells but these changes were not significant. Therefore, we keep going this study using microarray analysis and future studies will examine changes of gene expression on time-course and does treatment in variable cell lines.

  • PDF

Inhibition of matrix metalloproteinases: a troubleshooting for dentin adhesion

  • de Moraes, Izadora Quintela Souza;do Nascimento, Ticiano Gomes;da Silva, Antonio Thomas;de Lira, Lilian Maria Santos Silva;Parolia, Abhishek;de Moraes Porto, Isabel Cristina Celerino
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.31.1-31.20
    • /
    • 2020
  • Matrix metalloproteinases (MMPs) are enzymes that can degrade collagen in hybrid layer and reduce the longevity of adhesive restorations. As scientific understanding of the MMPs has advanced, useful strategies focusing on preventing these enzymes' actions by MMP inhibitors have quickly developed in many medical fields. However, in restorative dentistry, it is still not well established. This paper is an overview of the strategies to inhibit MMPs that can achieve a long-lasting material-tooth adhesion. Literature search was performed comprehensively using the electronic databases: PubMed, ScienceDirect and Scopus including articles from May 2007 to December 2019 and the main search terms were "matrix metalloproteinases", "collagen", and "dentin" and "hybrid layer". MMPs typical structure consists of several distinct domains. MMP inhibitors can be divided into 2 main groups: synthetic (synthetic-peptides, non-peptide molecules and compounds, tetracyclines, metallic ions, and others) and natural bioactive inhibitors mainly flavonoids. Selective inhibitors of MMPs promise to be the future for specific targeting of preventing dentin proteolysis. The knowledge about MMPs functionality should be considered to synthesize drugs capable to efficiently and selectively block MMPs chemical routes targeting their inactivation in order to overcome the current limitations of the therapeutic use of MMPs inhibitors, i.e., easy clinical application and long-lasting effect.

Stem Cells and Cell-Cell Communication in the Understanding of the Role of Diet and Nutrients in Human Diseases

  • Trosko James E.
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • The term, "food safety", has traditionally been viewed as a practical science aimed at assuring the prevention acute illnesses caused by biological microorganisms, and only to a minor extent, chronic diseases cause by chronic low level exposures to natural and synthetic chemicals or pollutants. "food safety" meant to prevent microbiological agents/toxins in/on foods, due to contamination any where from "farm to Fork", from causing acute health effects, especially to the young, immune-compromised, genetically-predisposed and elderly. However, today a broader view must also include the fact that diet, perse (nutrients, vitamins/minerals, calories), as well as low level toxins and pollutant or supplemented synthetic chemicals, can alter gene expressions of stem/progenitor/terminally-differentiated cells, leading to chronic inflammation and other mal-functions that could lead to diseases such as cancer, diabetes, atherogenesis and possibly reproductive and neurological disorders. Understanding of the mechanisms by which natural or synthetic chemical toxins/toxicants, in/on food, interact with the pathogenesis of acute and chronic diseases, should lead to a "systems" approach to "food safety". Clearly, the interactions of diet/food with the genetic background, gender, and developmental state of the individual, together with (a) interactions of other endogenous/exogenous chemicals/drugs; (b) the specific biology of the cells being affected; (c) the mechanisms by which the presence or absence of toxins/toxicants and nutrients work to cause toxicities; and (d) how those mechanisms affect the pathogenesis of acute and/or chronic diseases, must be integrated into a "system" approach. Mechanisms of how toxins/toxicants cause cellular toxicities, such as mutagenesis; cytotoxicity and altered gene expression, must take into account (a) irreversible or reversal changes caused by these toxins or toxicants; (b)concepts of thresholds or no-thresholds of action; and (c) concepts of differential effects on stem cells, progenitor cells and terminally differentiated cells in different organs. This brief Commentary tries to illustrate this complex interaction between what is on/in foods with one disease, namely cancer. Since the understanding of cancer, while still incomplete, can shed light on the multiple ways that toxins/toxicants, as well as dietary modulation of nutrients/vitamins/metals/ calories, can either enhance or reduce the risk to cancer. In particular, diets that alter the embryo-fetal micro-environment might dramatically alter disease formation later in life. In effect "food safety" can not be assessed without understanding how food could be 'toxic', or how that mechanism of toxicity interacts with the pathogenesis of any disease.

Potential Targets for Prevention of Colorectal Cancer: a Focus on PI3K/Akt/mTOR and Wnt Pathways

  • Pandurangan, Ashok Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2201-2205
    • /
    • 2013
  • Colorectal cancer (CRC) is one of the most common cancers in many parts of the world. Its development is a multi-step process involving three distinct stages, initiation that alters the molecular message of a normal cell, followed by promotion and progression that ultimately generates a phenotypically altered transformed malignant cell. Reports have suggested an association of the phosphoinositide-3-kinase (PI3K)/Akt pathway with colon tumorigenesis. Activation of Akt signaling and impaired expression of phosphatase and tensin homolog (PTEN) (a negative regulator of Akt) has been reported in 60-70% of human colon cancers and inhibitors of PI3K/Akt signaling have been suggested as potential therapeutic agents. Around 80% of human colon tumors possess mutations in the APC gene and half of the remainder feature ${\beta}$-catenin gene mutations which affect downstream signaling of the PI3K/Akt pathway. In recent years, there has been a great focus in targeting these signaling pathways, with natural and synthetic drugs reducing the tumor burden in different experiment models. In this review we survey the role of PI3K/Akt/mTOR and Wnt signaling in CRC.

Effect of Inhibition on Glucosultransferase and Antimicrobial Activity of Polyphenol Fraction of Gallnut and Red Grape Husk (오배자와 적포도과피 폴리페놀 분획물의 항균성 및 Glucosyltransferase 저해효과)

  • 안봉전
    • Food Science and Preservation
    • /
    • v.8 no.2
    • /
    • pp.217-223
    • /
    • 2001
  • The antimicrobial and glucosyltransferase(GTase) inhibition activity were searched for 30 species of various folk drugs and by products of food industry. Among them, two species, gallnut and red grape husk water extracts, were selected for the powerful antimicrobial and GTase inhibition activity. The polyphenol fractions of gallnut and red grape husk were showed very greater antimicrobial activity on both Gram(+) and (-), B. subtilis and E. coli. The minimum antimicrobial activity of gallnut polyphenol fraction were 1.0mg for B. subtilis and 3,0mg for E. coli. Red grape husk was 2.0mg for B. subtilis and 3.0mg for E coli. The polyphenol fractions of gall nut and red grape husk were showed powerful GTase inhibition activity. The concentrations of these fractions for 80% inhibition of GTase activity were 1.08$\times$10$\^$-3/mg/㎖ and 1.08$\times$10$\^$-2/mg/㎖, respectively. The most abundant compound in these fraction seems to be polyphenol derivatives. From these results, we think that the gallnut and the red grape husk polyphenol fraction had more antimicrobial and anti-plaque activities than artificial synthetic preservatives as an economic point of view.

  • PDF

A Study on the Racemization of Amino acids and its Separation with GC, GC/MS and HPLC (아미노산의 광학이성화 및 GC, GC/MS, HPLC에 의한 광학이성질체의 분리에 관한 연구)

  • Rhee, Jae-Seong;Hong, Jong-Ki;Eo, Yun-Woo;Kim, Taek-Jae
    • Analytical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.41-52
    • /
    • 1994
  • The importance of separation comes from demands on study for exact effect of synthetic drugs and the reactivity of enantiomer in biological system. Racemization rate was measured under the influence of heat, acid, UV-light, enzyme(trypsin) and 6N-HCl at $105^{\circ}C$ on alanine, threonine, isoleucine, lecuine, aspartic acid, methionine, glutamic acid, tyrosine. The method for the identification of overlapped amino acids with GC was developed from the close study of fragmentation pattern with mass spectrometry. With cyclodextrin bonded phase by HPLC, the separation of dansyl amino acid was tested for compartison.

  • PDF