• Title/Summary/Keyword: Synthetic aperture radar

Search Result 585, Processing Time 0.026 seconds

Imaging Method for Array Structured Bistatic Ground-to-Air Radar (배열 구조 바이스태틱 지대공 레이다의 이미징 기법)

  • Choi, Sang-Hyun;Yang, Dong-Hyeuk;Song, Ji-Min;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.599-607
    • /
    • 2018
  • This paper presents a ground-to-air bistatic radar system and its implementation algorithm, which resembles an SAR(synthetic aperture radar) reconstruction algorithm. Via cooperative working between a standoff transmitting radar and an array of ground based receiving radars, it detects and images moving targets under clutter in the air. In the proposed system, the whole receiving antenna aperture is synthesized by physical ground based radars, and thus, unlike conventional SAR, it does not require long illumination time of the target area. The reconstruction algorithm uses planewave approximation based polar format processing, which alleviates the requirement of positioning the receiving radars, which can cause grating lobes if not chosen properly. We derive a reconstruction algorithm including clutter suppression and discuss implementation issues, such as the resolution of a reconstructed image and the method of compensation for the irregularity of the receiving radars' positions. A simulation that validates the proposed algorithm is also shown.

Signal subspace comparison between Physical & synthesized array data in echo imaging

  • Choi, Jeong-Hee
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.262-267
    • /
    • 1998
  • In Synthetic Aperture Radar(SAR) imaging, the echoed data are collected by moving radar's position with respect to the target area, and this operation actually gives effect of synthesizing aperture size, which in turn gives better cross range resolution of reconstructed target scene. Among several inversion scheme for SAR Imaging, we uses an inversion scheme which uses no approximation in wave propagation analysis, and try to verify whether the collected data with synthesized aperture actually gives the same support as that with physical aperture in the same size. To do this, we make a signal subspace comparison of two imaging models with physical and synthesized arrays, respectively. Theoretical comparison and numerical analysis using Gram-Schmidt procedures had been performed. The results showed that the synthesized array data fully span the physical array data with the same system geometry and strongly support the proposed inversion scheme valuable in high resolution radar imaging.

  • PDF

A Study on Automatic Target Recognition Using SAR Imagery (SAR 영상을 이용한 자동 표적 식별 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1063-1069
    • /
    • 2011
  • NCTR(Non-Cooperative Target Recognition) and ATR(Automatic Target Recognition) are methodologies to identify military targets using radar, optical, and infrared images. Among them, a strategy to recognize ground targets using synthetic aperature radar(SAR) images is called SAR ATR. In general, SAR ATR consists of three sequential stages: detection, discrimination and classification. In this paper, a modification of the polar mapping classifier(PMC) to identify inverse SAR(ISAR) images has been made in order to apply it to SAR ATR. In addition, a preprocessing scheme can mitigate the effect from the clutter, and information on the shadow is employed to improve the classification accuracy.

Space-based Ocean Surveillance and Support Capability: with a Focus on Marine Safety and Security (인공위성 원격탐사의 활용: 선박 감시 기법)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.41-45
    • /
    • 2006
  • From the 1978 Seasat synthetic aperture radar(SAR) to present systems, spaceborne SAR has demonstrated the capability to image the Earth's ocean and land features over broad areas, day and night, and under most weather conditions. The application of SAR for surveillance of commercial fishing grounds can did in the detection of illegal fishing activities and provides more efficient use cf limited aircraft or patron craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which uses the ground-based radar system has some difficulties in detecting moving ships due to the limited detection range cf about 10 miles. This paper introduces the field testing results of ship detection by RADARSAT SAR imagery, and proposes a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

Automatic Detection Approach of Ship using RADARSAT-1 Synthetic Aperture Radar

  • Kwan, Seung-Joon;Gong, In-Young;Yang, Chan-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.147-152
    • /
    • 2005
  • This paper proposes an evaluates a new approach to detect ships as targets from Radarsat-1 SAR (Synthetic Aperture Radar) imagery in the vicinity of Korean peninsula. To be more specific, a labeling technique and morphological filtering in conjunction with some other methods are employed to automatically detect the ships. From the test, the ships are revealed to be detected. For ground truth data, information from a radar system is used, which allows assessing accuracy of the approach. The results showed that the proposed approach has the high potential in automatically detecting the ships.

  • PDF

RELATIONSHIP BETWEEN FOREST STAND PARAMETERS AND MULTI-BAND SAR BACKSCATTERING

  • Shin, Jung-Il;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.332-335
    • /
    • 2008
  • Newly developing SAR (Synthetic Aperture Radar) sensors commonly include high resolution X-band those data are expected to contribute various applications. Recent few studies are presenting potential of X-band SAR data in forest related application. This study tried to investigate the relationship between forest stand parameters and multi-band SAR normalized backscattering. Multi-band SAR data was radiometric corrected to compare signal from different forest stand condition. Then correlation coefficients were estimated between attribute of forest stand map and normalized backscattering coefficients. Although overall correlation coefficients are not high, only X-band shows strong relationship with DBH class than other bands. The signal of C- and L-band is composed of a large number of discrete tree components such as leaves, stems, even background soil. In forest, strength of radar backscattering is affected by complex parameters. Further study might be considered more various forest stand parameters such as canopy density, stand height, volume, and biomass.

  • PDF

FEASIBILITY STUDY OF SYNTHETIC APERTURE RADAR - ADAPTABILITY OF THE PAYLOAD TO KOMPSAT PLATFORM

  • Kim, Young-Soo;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.225-230
    • /
    • 2002
  • Synthetic Aperture Radar (SAR) has been used for mapping the surface geomorphology of cloudy planets like Venus as well as the Earth. The cloud-free Mars is also going to be scanned by SAR in order to detect buried water channels and other features under the very shallow subsurface af the ground. According to the 'Mid and Long-term National Space Development Plan' of Korea, SAR satellites, in addition to the EO (Electro-Optical) satellites, are supposed to be developed in the frame of the KOMPSAT (Korean Multi-Purpose Satellite) program. Feasibility of utilizing a SAR payload on KOMPSAT platform has been studied by KARI in collaboration with Astrium U.K. The purpose of the ShR program is Scientific and Civil applications on the Earth. The study showed that KOMPSAT-2 platform can accommodate a small SAR like Astrium’s MicroSAR. In this paper, system aspects of the satellite design are presented, such as mission scenario, operation concept, and capabilities. The spacecraft design is also discussed and conclusion is followed.

Space-based Ocean Surveillance and Support Capability: with a Focus on Marine Safety and Security (영해관리를 위한 인공위성 원격탐사기술)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.127-132
    • /
    • 2007
  • From the 1978 Seasat synthetic aperture radar(SAR) to present systems, spaceborne SAR has demonstrated the capability to image the Earth's ocean and land features over broad areas, day and night, and under most weather conditions. The application of SAR for surveillance of commercial fishing grounds can aid in the detection of illegal fishing activities and provides more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which uses the ground-based radar system has some difficulties in detecting moving ships due to the limited detection range of about 10 miles. This paper introduces the field testing results of ship detection by RADARSAT SAR imagery, and proposes a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

A Study on the Rotational Motion Compensation Method for ISAR Imaging (ISAR 영상 형성을 위한 회전운동보상 기법 연구)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Chung, Sung-Eun;Kim, Chan-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • In this paper, we propose a inverse synthetic aperture radar(ISAR) rotational motion compensation(RMC) method to remove residual blurring caused by non-uniform rotational motion of a target. First, a range bin having an isolated scatterer is selected. Next, polynomial phase signal in the selected range bin is estimated by using both Fourier transform(FT) and polynomial-phase transform(PPT). Finally, a new slow time variable that uniformly samples radar signal along the aspect angle directions is defined by using the estimated phase signal, and we interpolate radar signal in terms of the new time variable. As a result, rotational motion to blurr ISAR images is removed, and focused ISAR images are obtained. Simulation results using battleship model validate the robustness and effectiveness of our proposed RMC method.

A Study on the Synthetic Aperture Radar System Motion Compensation Technique (SAR(Synthetic Aperture Radar)시스템 요동보상기법 연구)

  • Kang, Eun-Kyun;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.221-229
    • /
    • 2013
  • In this paper, the image formation by the motion compensation technique for Synthetic Aperture Radar system(SAR) were realized through the computer simulation. The motion compensation technique performed image data with the range compression, the compensation procedure, the azimuth compensation and the noise elimination procedure. The range compression procedure transform the SAR raw data into the frequency domain and correlate with the range reference function and then inversely transform into the time domain. The compensation procedure contain the aircraft fluctuations compensation and the radar image degrading effect elimination procedure which was caused by image formation algorithm itself. The aircraft fluctuations compensation procedure perform the first stage which correct the phase angle and the second stage which calculate the Doppler frequency and determine the coordinate of the received signal. The radar image degrading effect elimination procedure also perform range migration compensation and the image defocussing effect compensation. The azimuth compression procedure transform the compensation data to the frequency domain and correlate with the azimuth reference function. The azimuth correlated data are inversely transformed to the time domain which is called SAR image data. When the above procedure were completed, the image data contains the received signals mixed with noise. The threshold technique was applied to elimination the noise from the mixed image data.