• Title/Summary/Keyword: Synthetic Seawater

Search Result 47, Processing Time 0.03 seconds

Removal Efficiency of Settleable Solids in Seawater Aquaculture Farm Wastewater (하이드로싸이클론을 이용한 해수 양식장 침전 고형물의 제거 효율 평가)

  • Junhyuk Seo;Pyongkih Kim;Jeonghwan Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.1
    • /
    • pp.116-123
    • /
    • 2023
  • Flow-through aquaculture systems generate large amounts of wastewater containing compounds such as solids that can settle near aquafarms and cause eutrophication. The settled solids are often reintroduced into flow-through systems, and aquatic animals can be affected by the solids and pathogens associated with these solids. For a sustainable aquaculture operation, adequate wastewater treatment is required. Hydrocyclones are one of the most promising technologies for the removal of solids in aquaculture wastewater. In this study, a model for performance prediction of hydrocyclones was investigated under three different operating conditions: water temperature, solids concentration, and water inlet velocity. The synthetic solids solution was prepared using settled solids from abalone aquaculture farms. The daily solids removal rates of the tested hydrocyclones ranged from 0.18 to 26.0 g solids-m-3-day-1, and removal efficiency ranged from 5.1 to 34.4%. The inlet water velocity had the greatest effect on solids removal and hydrocyclone efficiencies. The following multiregression model equation was derived from the daily solids removal rate (g solids-m-3-day-1) results for water temperature (T, ℃), solids concentration (SS, mg-L-1), and tangential inlet water velocity (TIV, m-sec-1): daily solids removal rate: f(z)=4.465+0.809TIV-0.375T+0.217SS (r2=0.976).

Application of SAR DATA to the Study on the Characteristics of Sedimentary Environments in a Tidal Flat (SAR 자료를 이용한 갯벌 퇴적환경 특성 연구)

  • Kim, Kye-Lim;Ryu, Joo-Hyung;Kim, Sang-Wan;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.497-510
    • /
    • 2010
  • In this study, comparisons of the backscattering coefficients and the coherence values which had been extracted from SAR (Synthetic Aperture Radar) images such as JERS-1, ENVISAT and ALOS satellites with surface roughness, surface geometric and soil moisture content were carried out. As the results of analysis using the backscattering coefficient and coherence values from SAR images, the coherence was shown high in the region containing more of mud fraction due to higher viscosity of fine grain-size. A lot of tidal channels were well developed in the Ganghwa tidal flat, affecting the drainage of seawater and subsequent soil moisture content by exposure time of tidal flat. The backscattering coefficient. consequently, appeared to be lower in sand flat and mix flat with decrease of soil moisture. In contrast, most mud flats were distributed at high elevation so that soil moisture was not much influenced by seawater. The backscattering coefficient in mud flat seemed to have a relationship with the density of tidal channel. In addition, lowering backscattering coefficients in the all Ganghwa tidal flat was observed when surface remnant water increased according to the amount of rainfall. The correlation between backscattering coefficient, coherence and sediment environment factors in the Ganghwa tidal flat was investigated. In the future, more quantitative spatial analysis will be helpful to well understand the sedimentary influence of various sediment environment factors.

Characteristics of Fluorescent Organic Matter and Amino Acids Composition in the East Sea (동해의 용존유기물 형광특성 및 아미노산 조성에 관한 연구)

  • 박용철;손승규
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.341-354
    • /
    • 1995
  • Fluorescence characteristic and amino acids composition of organic matter were determined from extracted seawater samples at eight stations in the East Sea of Korea. Organic compounds have been extracted onto C-18 Sep-Pak cartridges. Three dimensional excitation/emission fluorescence contouring of extracts showed two markedly distinct characterized fluoroscopies representing protein-like biomacromolecule and humic-like geomacromolecule. Protein-like biomacromolecule showing fluorescence maxima at 280 nm/330 nm (excitation/emission) were abundant in the surface mixed layer and then apparently decreased below the thermocline at most stations. It suggests that source of biomacromolecule is comely related with vigorous biological synthetic activity in the surface layer and bacteria decompose its biologically labile components near the thermocline and in the deeper layer. On the other hand, humiliate geomacromolecule showing fluorescence maxima at 330 nm/430 nm (excitation/emission) were low in the surface mixed layer implying photochemical oxidation and then increased below the thermocline at most stations. It suggests that geomacromolecule might be transformed by condensation of bio-refractoryorganic fraction after decomposition of biomacromolecule and particulate organic carbon derived from the surface mixed layer. HPLC measurements of amino acids showed similar composition between seawater and extracted organic macromolecule after hydrolysis. Glycine, serine and alanine were predominant, accounting for more than 50% of total amino acids. Dissolved free amino acids of seawater were more abundant in the surface layer(0.7∼1.8 uM) than the deeper layer (0.2∼0.4 uM). D/L racemic ratio of alanine of extracted organic matter showed lower value in the surface layer than the deeper layer. It suggests that biomacromolecule predominant in the surface layer is relatively young, rapidly recycling and biologically labile.

  • PDF

Effect of ultrasonic irradiation on membrane fouling and membrane wetting in direct contact membrane distillation process (초음파 조사가 직접 접촉식 막증발 공정의 막오염과 막젖음에 미치는 영향)

  • Jang, Yongsun;Choi, Yongjun;Lee, Sangho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.343-350
    • /
    • 2016
  • Membrane distillation (MD) is a novel separation process that have drawn attention as an affordable alternative to conventional desalination processes. However, membrane fouling and pore wetting are issues to be addressed prior to widespread application of MD. In this study, the influence of ultrasonic irradiation on fouling and wetting of MD membranes was investigated for better understanding of the MD process. Experiments were carried out using a direct contact membrane distillation apparatus Colloidal silica was used as a model foulants in a synthetic seawater (35,000 mg/L NaCl solution). A vibrator was directed attached to membrane module to generate ultrasonic waves from 25 kHz (the highest energy) to 75 kHz (the lowest energy). Flux and TDS for the distillate water were continuously monitored. Results suggested that ultrasonic irradiation is effective to retard flux decline due to fouling only in the early stage of the MD operation. Moreover, wetting occurred by a long-term application of ultrasonic rradiation at 75 kHz. These results suggest that the conditions for ultrasonic irradiation should be carefully optimized to maximize fouling control and minimize pore wetting.

Application of Polymer Induced Drag Reduction to OTEC System (고분자로 인한 마찰저항 감소의 OTEC시스템 응용)

  • Kim, C.A.;Sung, J.H.;Choi, H.J.;Chun, W.;Kim, S.;Kim, C.B.;Kim, H.T.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • Polymer induced turbulent drag reduction in a rotating disk apparatus was investigated using four different molecular weights of poly(ethylene oxide)(PEO) in a synthetic seawater solution for the purpose of potential application to the cold water piping in the Ocean Thermal Energy Conversion(OTEC) system. To apply drag reduction to the OTEC we measured the temperature dependence on the drag reduction efficiency. From this study, it was found that the drag reduction efficiency increases with the temperature and the concentration. To measure the drag reduction efficiency during the operation period, the drag reduction behavior was detected as a function of time and the results obtained from the experiment was compared to the Brostow's model equation.

  • PDF

Disinfection of Escherichia coli and Bacillus subtilis using underwater plasma

  • Yu, Seung-Min;No, Tae-Hyeop;Seok, Dong-Chan;Yu, Seung-Ryeol;Hong, Yong-Cheol;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.47-47
    • /
    • 2010
  • Discharge under the water is very hard and demand considerable high voltage. But specially improved electrode can generate plasma discharge to salty water with relatively low voltage. A round shape ceramic electrode having many pinholes combined with metallic one can generate plasma. 400 volt, 10 kHz and 3 micro second pulse width were applied to repeatedly running synthetic seawater with 10 L/m velocity, containing cultivated E. coli and Bacillus. As a result, 18, 94, 99.97, 100, 100 % disinfection rates to E. coli and 17.1, 17.1, 82.9, 99.4, 99.9 % disinfection rates to Bacillus subtilis were achieved to 1, 2, 3, 4, 5 times repetitive treatment respectively. In the plasma condition, the ions and electrons are separated and new kinds of components are re-synthesized by the intensive movement of the components. Especially chlorine ions are separated and recombined to residual free chlorine like HOCl, $OCl^-$. The residual free chlorine concentrations of discharged water were 0.25, 0.88, 1.39, 1.59, 1.66 mg $Cl_2$/L after 5 times treatment respectively. Another unconfirmed radical and oxidants for example, OH, $H_2O_2$, and $O_3$ can have an effect on microorganism of course.

  • PDF

Analysis of Synthetic Fragrances (SFs) in Water Using Stir Bar Sorptive Extraction (SBSE) and GC-MS/MS (교반막대 추출법과 GC-MS/MS를 이용한 수중의 합성 향물질류 분석)

  • Seo, Chang-Dong;Son, Hee-Jong;Yoom, Hoon-Sik;Choi, Jin-Taek;Ryu, Dong-Choon;Kwon, Ki-Won;Jang, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.387-395
    • /
    • 2014
  • A highly sensitive analytical method based on stir bar sorptive extraction (SBSE) technique and gas chromatography/tandem mass spectrometry (GC-MS/MS) has been developed, allowing the simultaneous multi-analyte determination of 11 synthetic fragrances (SFs) in water samples. The stir bar coated with polydimethylsiloxane (PDMS) was added to 40 mL of water sample at pH 3 and stirred at 1,100 rpm for 120 min. Other SBSE parameters (salt effect and presence of organic solvent) were optimised. The method shows good linearity (coefficients > 0.990) and reproducibility (RSD < 10.9%). The extraction efficiencies were above 83% for all the compounds. The limits of detections (LOD) and limits of quantification (LOQ) were 2.1~4.1 ng/L and 6.6~12.9 ng/L, respectively. The developed method offers the ability to detect 11 SFs at ultra-low concentration levels with only 40 mL of sample volume. Matrix effects in tap water, river water, wastewater treatment plant (WWTP) final effluent water and seawater were investigated and it was shown that the method is suitable for the analysis of trace level of 11 SFs. The method developed in the present study has the advantage of being rapid, simple, high-sensitive and both user and environmentally friendly.

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF

Evaluation of Groundwater Quality Using Factor Aanlyses and Agrochemicals in an Agricultural Area (요인분석과 농약성분 특성에 의한 농업지역의 지하수 수질 평가)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Kim, Kwang-Sung;Cheong, Jae-Yeol;Ryu, Sang-Min;Kim, Deuk-Ho;Kim, Hyun-Ji
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.217-234
    • /
    • 2009
  • This study characterized groundwater quality and the influence of agrochemicals in a part of Ilgwang-Myeon agricultural area in Gijang-Gun, Busan Metropolitan City, using factor analyses. From the 1st, 2nd, and 3rd analyses of groundwater samples, the mean concentrations of $Ca^{2+}$, $Na^+$, $Mg^{2+}$, $K^+$, $Zn^{2+}$, $Cu^{2+}$, $Fe^{2+}$, $Al^{3+}$, $NO_3\;^-$, $Cl^-$, $SO_4\;^{2-}$, $F^-$, and $SiO_2$ were higher in the 2nd analysis than the other analyses. Pesticide carbofuran and herbicide alachlor were detected at the wells more than a half of all the wells in the 2nd analysis but not in the 4th analysis. This fact may be explained by that a higher precipitation induced higher infiltration rate of contaminants into groundwater during the 2nd survey. According to R- and Q-mode factor analyses, and chemical composition, inorganic constituents excepting $SiO_2$, $HC0_3\;^-$-, and $F^-$ may be influenced by anthropogenic sources (manures, synthetic fertilizers, and domestic wastes), seawater as well as water-mineral interaction. A typical indicator of groundwater contamination, nitrate, exceeds around 4-5 times over the Korean standard for drinking water. Additionally, the influence of seawater diminishes from the seaside to inland.

A Study on Particle and Crystal Size Analysis of Lithium Lanthanum Titanate Powder Depending on Synthesis Methods (Sol-Gel & Solid-State reaction) (분말 합성법(Sol-Gel & Solid-State reaction)에 따른 Lithium Lanthanum Titanate 분말의 입자 및 결정 크기 비교 분석에 관한 연구)

  • Jeungjai Yun;Seung-Hwan Lee;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Bin Lee;Rhokyun Kwak;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.