• Title/Summary/Keyword: Synthetic Heat Transfer Fluid Boiler

Search Result 4, Processing Time 0.017 seconds

A Study on the Imfluence of the Pipe Line of Boiler for Flame Distribution of Combustion Furnace (연소로의 화염분포가 보일러 관로에 미치는 영향에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.6
    • /
    • pp.1435-1441
    • /
    • 2014
  • The fire took place in the synthetic heat transfer fluid boiler used in production process of medium density fiberboard. This study investigated pressure distribution of the first, second and third passes and the temperature in the fire burner. The boiler's internal fluid is unsteady due to the out of order inverter. As the operation continues, the flame's flow and speed are unsteady. The synthetic heat transfer fluid leak spouted about 120kg/min in the form of vapor in the early period of the fire. The flame extended to the second and third passes. The highest temperature of the second and third pass is $1059^{\circ}C$ and $1007^{\circ}C$, respectively. The synthetic heat transfer fluid spouted through the cracked part of the fire box in the first pass and accumulated on the turn table. Therefore, it is expected that the temperature of the interior of the fire box is above $1200^{\circ}C$. The temperature of the burner rises to a maximum level several times in a short period. On account of that, several explosions occur in the fire burner. Pressure distribution at steady state in combustion furnace is 2~5mAq and pressure distribution at inverter under fault condition in combustion furnace is 10~-53mAq. The decrement of coil thickness measurement for synthetic heat transfer fluid boiler is 0~5mm.

Structural Analysis of Synthetic Heat Transfer Fluid Boiler (열매체보일러의 구조해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3352-3357
    • /
    • 2012
  • In this paper, 3-dimensional designing program CATIA was used to design in order to investigate causes of a fire in a boiler using synthetic heat transfer fluid. And also structural analysis was conducted to the boiler by using 3-dimensional finite element code, ANSYS. Maximum temperature, maximum stress, and maximum strain were obtained at the normal condition and after fire.

Temperature and Flow Velocity Analysis for Fire in Synthetic Heat Transfer Fluid Boiler (열매유 보일러 내부화재에 따른 온도 및 속도분포 해석)

  • Kim, Yeob-Rae;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.19-25
    • /
    • 2013
  • The fire took place in the synthetic heat transfer fluid boiler. This study uses simulation to investigate the first, second and third passes and the temperature in the fire burner. The boiler's internal fluid is more or less unsteady due to the out of order inverter. As the operation continues, the flame's flow and speed are unsteady. The synthetic heat transfer fluid leak spouted about 120 kg/min in the form of vapor in the early period of the fire. The flame extended to the second and third passes. The highest temperature of the second and third pass is $1059^{\circ}C$ and $1007^{\circ}C$, respectively. The simulation shows that the temperature is $767^{\circ}C$ in the low part of the third pass. The synthetic heat transfer fluid spouted through the cracked part of the fire box in the first pass and accumulated on the turn table. The temperature rises to $183^{\circ}C$ in the low part of the burner. Therefore, it is expected that the temperature of the interior of the fire box is above $1200^{\circ}C$. The temperature of the burner rises to a maximum level several times in a short period. On account of that, several explosions occur in the fire burner.

Temperature and Flow Velocity Simulation for Fire in Synthetic Heat Transfer Fluid Boiler (열매유 보일러 내부 화재에 따른 온도 및 속도분포 시뮬레이션)

  • Kim, Yeob-Rae;Lee, Dong-Myung;Kim, Yun-Zeung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.472-475
    • /
    • 2012
  • MDF(Medium Density Fiberboard) 제조공정에 필요한 열매유(SHTF, Synthetic Heat Transfer Fluid)를 가열하는 보일러에서 화재가 발생하였다. 열매유 보일러는 1차 패스, 2차 패스, 3차 패스로 구성되어 있으며, 화재가 발생된 1차 패스 연소대 위쪽 14단 부근에서 열매유가 방출되었다. 화재확산으로 인한 조사내용 및 데이터를 토대로 화재 시뮬레이션용 전산유체역학인 ANSYS-CFX를 이용하여 재현하고 화재 모델링 해석 및 분석을 통해 화재 온도를 산정하고 피해의 범위를 규정하였다. 본 화재 사고로 설비의 운전 및 소재에 대한 피해를 규정하고, 이론에 의한 과학적인 정밀 조사를 실시하여 향후의 안전 운전을 위한 제안을 하고자 한다.

  • PDF