• Title/Summary/Keyword: Synthetic Fibers

Search Result 188, Processing Time 0.025 seconds

Effect of Mineral Admixture on Bond Properties between Polyolefin Based Synthetic Fiber and Cement Mortar (폴리올레핀계 합성 섬유와 시멘트 모르타르와의 부착 특성에 미치는 광물질 혼화재의 효과)

  • Lee, Jin-Hyeong;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.339-346
    • /
    • 2011
  • The effects of mineral admixtures on the bonding properties of cement mortar to polyolefin based synthetic fiber were evaluated. The mineral admixtures consisted of 0%, 5%, 10%, and 15% fly ash, blast furnace slag, and metakaolin in cement. Bond interactions between the cement mortar and the polyolefin based synthetic fiber were determined by Dog-bone bond tests. Bond tests of the polyolefin based synthetic fiber showed an increase in pullout load with the strength of the cement mortar. Also, the interface toughness of polyolefin based synthetic fiber in cement mortar increased as the fly ash, blast furnace slag, and metakaolin contents increased. The microstructure of polyolefin based synthetic fiber surface was examined after the pullout test to analyze the frictional resistant force according to the replacement ratio of fly ash, blast furnace slag, and metakaolin during the pullout process of polyolefin based synthetic fiber in cement mortar. The scratched of polyolefin based synthetic fibers increased with the replacement ratio of fly ash, blast furnace slag, and metakaolin. Also, the interface toughness was enhanced by adhesion forces induced by the fly ash, blast furnace slag, and metakaolin.

Compressional Properties of PTT BCF and Nylon BCF Carpets (PTT BCF카펫과 나일론 BCF카펫의 압축특성(壓縮特性)에 관(關)한 연구(硏究))

  • Yun, Myung-Hui;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.8 no.5
    • /
    • pp.115-124
    • /
    • 2004
  • PTT(polytrimethylene terephthalate) is a thermoplastic that can be melt-spun into fibers and has extensive applications in carpets, textiles and apparel, engineering thermoplastics, nonwovens, and films or sheets. This polymer combines the good properties of nylon and polyester. Compared with other synthetic fibers such as nylon and acrylic, the PTT fibers feel softer, dye easier with vibrant colors, stretch and recover better. Moreover, the PTT fibers for carpets resist most stainings, clean better, and dry faster. The PTT was first patented in 1941, but it was not until the 1990's, when Shell Chemicals developed the practical method of producing PDO, the raw material for PTT. Many studies have been done including the retention of carpet texture using an image analysis technique, or compressional resilience of the carpet for long term use. In this study, PTT and nylon BCF carpets were compared in terms of the compressional properties including the resilience, using one of the KES system for repetitive measurements. The compression resilience(RC) values of the PTT BCF carpets far exceed those of nylon 6 BCF carpets. The RC values of the PTT BCF carpet(cut) specimens are $42{\sim}45%$ for 5 successive compression deformations, while those of the nylon BCF carpet specimens(cut) are $26{\sim}28%$. There is also a similar trend in the RC values for the other type of carpet which is the loop type. This resilience is one of the important factors of carpet usage evaluation.

Performance of fly ash stabilized clay reinforced with human hair fiber

  • Rekha, L. Abi;Keerthana, B.;Ameerlal, H.
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.677-687
    • /
    • 2016
  • Industrialization and urbanization are the two phenomena that are going relentless all over the world. The consequence of this economic success has been a massive increase in waste on one hand and increasing demand for suitable sites for construction on the other. Owing to the surplus raw materials and energy requirement needed for manufacturing synthetic fibers, applications of waste fibers for reinforcing soils evidenced to offer economic and environmental benefits. The main objective of the proposed work is to explore the possibilities of improving the strength of soil using fly ash waste as an admixture and Human Hair Fiber (HHF) as reinforcement such that they can be used for construction of embankments and land reclamation projects. The effect of fiber content on soil - fly ash mixture was observed through a series of laboratory tests such as compaction tests, CBR and unconfined compression tests. From the stress - strain curves, it was observed that the UCC strength for the optimised soil - flyash mixture reinforced with 0.75% human hair fibers is nearly 2.85 times higher than that of the untreated soil. Further, it has been noticed that there is about 7.73 times increase in CBR for the reinforced soil compared to untreated soil. This drastic increase in strength may be due to the fact that HHF offer more pull-out resistance which makes the fibers act like a bridge to prevent further cracking and thereby it improves the toughness which in turn prevent the brittle failure of soil-flyash specimen. Hence, the test results reveal that the inclusion of randomly distributed HHF in soil significantly improves the engineering properties of soil and can be effectively utilized in pavements. SEM analysis explained the change of microstructures and the formation of hydration products that offered increase in strength and it was found to be in accordance with strength tests.

Material Strength and Deformation Performance of Highly Ductile High-Strength Cement Composite (높은 연성을 갖는 고강도 시멘트계 복합체의 재료강도 및 변형성능)

  • Choi, Jeong-Il;Lee, Bang Yeon;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • The purpose of this study is to investigate experimentally the material strength and tensile deformation behavior of highly ductile high-strength cement composites reinforced by synthetic fibers. Materials and mixture proportions were designed to make composites with a strength level of 80 MPa in compression. Two kinds of polyethylene fibers with different properties were employed as reinforcing fibers. A series of experiments on density, compressive strength, and deformation performance was performed. Experimental results showed that the tensile behavior and cracking patterns of cement composite strongly depends on the types of reinforcing fibers. It was also demonstrated that the cement composite with a compressive strength of 77.7 MPa and a tensile strain capacity of 7.9% can be manufactured by using a proper polyethylene fiber.

A Study on the Environment-Friendly Design Expressed in Fashion -Focused on the Korean Designer′s Work since 1990- (패션에 표현된 환경친화적 디자인의 특성 -1990년대 이후의 국내 디자이너 작품을 중심으로-)

  • 김문숙;최나영
    • The Research Journal of the Costume Culture
    • /
    • v.6 no.2
    • /
    • pp.163-180
    • /
    • 1998
  • The purpose of this study is to investigate the main characteristics of the environment-friendly design expressed in Koran fashion. Environment-friendly design can be categorized into choice of material, extension of products life cycle, and recycling design. In this study, Korean fashion designers can be found having the conciousness of environment for fashion design since 1990. First, in choice of material, the designers used Natural fibers which are cotton, linen, wool, and etc, and used natural dyes. Some of the designers have moved from using real fur to using fake fur for animal welfare. But fake furs produced from synthetic or regenerated fibers have the environmental problems during textile production processes. Some of the designers used fake leather made from the skins of an edible fish which are otherwise going to waste. Secondly, Design for extension of products life cycle can economize the resources and energy. Design for extension of products life cycle are classified into reversible clothing, many function clothing, modular style, patina clothing, simple style, and layered look. Finally, recycling design are classified into recycling of daily necessaries and expression techniques of recycling design which are designer's works used patchwork, mash techniques, and handmade of knits or buttonhole stitch.

  • PDF

Preparation of PET Using Homogeneous Catalysts. II. Effect of BHPP, NPG and PD in $Sb_2$$O_3$ Glycol Solution Catalysts

  • Son, Tae-Won;Son, Hae-Shik;Kim, Won-Ki;Lee, Dong-Won;Kim, Kwang-Il;Jeong, Jae-Hun
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.6-11
    • /
    • 2000
  • In the polycondensation reaction of polyethyleneterephthalate(PET), $Sb_2$$O_3$, can react effectively as a catalyst, if physically transformed. $Sb_2$$O_3$ powder is transformed into liquid solution by dissolving in ethylene glycol(EG). Homogeneous catalyst is made by mixing this liquid solution with glycols having different solubility. The efficient reaction of PET polymerization is expected by using homogeneous catalyst. PET was synthesized using homogeneous catalysts of 4 wt.% $Sb_2$$O_3$ solution dissolved in glycol[EG, 2,2-bis(4-(2-hydroxyethoxy)phenol)propane(BHPP), neopentyl glycol(NPO), and 1,3-propandiol(PD)]. PET using EG-BHPP($Sb_2$$O_3$) catalysts shows the highest I.V. within a reaction time of 120 min. In the p-d analysis, PET using EG-BHPP($Sb_2$$O_3$) catalysts has the fastest propagation rate and slowest degradation rate. EG-BHPP($Sb_2$$O_3$) catalysts are more efficient than EG($Sb_2$$O_3$) catalysts and $Sb_2$$O_3$ powder catalysts.

  • PDF

Dyeing Properties of Microbial Violacein on Mutifiber Fabrics (미생물 violacein 색소의 다섬교직포에서의 염색성)

  • Choi, Jong-Myoung;Kim, Yong-Sook
    • Fashion & Textile Research Journal
    • /
    • v.11 no.5
    • /
    • pp.818-826
    • /
    • 2009
  • Dyeability of microbial violacein produced from Chromobacterum violaceum CV107 on to multifiber fabrics has been studied. The bluish-purple colourants were produced by cultivation of Chromobacterum violaceum using LB liquid medium for 2 days. The colourant was extracted with 80% acetone and identified as violacein by LC/MS analysis. The violacein could be dyed on not only natural fibers such as Cotton, Silk and Wool but also synthetic fibers such as Diacetate, Triacetate, Creslan 61 and Nylon 66. Maximum K/S values were shown at 540-580 nm according to different fiber with color appearance of purple or blue. An optimum pH and temperature under dyeing condition were 10 and $70^{\circ}C$, respectively. Any mordants were not improved colour density and quality on various fabrics. From this studies, pigments produced microbe have a high potentials for natural dyeing on fabrics. Finally, development of new colourants from microbe has made a possible change for new dyeing field in respects of eco-friend and repeatability of natural dyeing for apparels.

Physiochemical Properties and Dyeability of Safflower Colorants Extracted by Ultrasonic Treatment (초음파로 추출된 홍화색소의 특성 분석과 염색성 평가)

  • Kim, Yong-Sook;Choi, Jong-Myoung
    • Fashion & Textile Research Journal
    • /
    • v.11 no.2
    • /
    • pp.337-343
    • /
    • 2009
  • This study systematically investigated a method for extraction of safflower (Carthamus tinctorius Linnaeus) colorants by ultrasonic treatment. Compared to pigments productivity and cell wall structures of safflower after general and ultrasonic method, the ultrasonic method showed high extraction efficiency of safflower pigments due to destruction of safflower cell wall caused by high vibration energies. Microscopic analysis confirmed the hypothesis that the ultrasonic treatment of safflower caused its cell wall structure loosened and made efficient extraction of safflower pigments. And also, LC-MS/MS analysis revealed that productivities of the yellow and red safflower pigments by ultrasonic method were 21.9% and 14.6% higher, respectively, than those of pigments extracted by general method. The ultrasonic extracted yellow and red colorants could be used to dye not only natural fibers like cotton, silk and wool, but also synthetic fiber like nylon, and generally gave a better color tone than the general extracted colorants from safflower due to the affinities of red and yellow colorant on different fibers. As the yellow and red colorant were extracted by ultrasonic treatment in water, the K/S value on of 550/440nm of cotton and rayon was increased but in the case of silk and wool the change of this value was almost not detected. Finally, this technique might provide a solution to establish reproducibility and standardization for the extraction and dyeing methods on fabrics.

Studies on the Antibacterial Activity of Wet-tissue Saturated with Electrolytic Water of NaCl Solution (소금물의 전기분해수가 첨가된 물티슈의 항균력 연구)

  • Seo, Jin Ho;Lee, Dong Jin;Lee, Myoung Ku;Oh, Deog Hwan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.147-153
    • /
    • 2015
  • Wet-tissue has been used for baby wipe, cleansing pads, industrial wipes, pain relief, personal hygiene, pet care, and healthcare at home, care facilities, restaurant, and hospital. Raw materials of wet-tissue are mainly natural fibers and synthetic fibers such as cotton, rayon, PET (polyethylene terephthalate) and so on. In this study, electrolytic water of NaCl solution was used as fluid in wet-tissue, and the effect of raw materials on antibacterial rate of wet-tissue was investigated. Rayon (100%) showed an excellent antibacterial rate compared with cotton (100%) and rayon:PET (50:50). Antibacterial rate increased as Cl concentration of electrolytic water increased. Absorption of rayon:PET (50:50) was uneven and antibacterial rate of wet-tissue slightly increased by increase of Cl concentration. Antibacterial rate of wet-tissue was 100% under the conditions of more than 1.5 mL of electrolytic water dosage, and dropped under 50% after storage period of 48 hours.

A Study on Punggi Rayon (풍기인견에 관한 연구)

  • Lee, Yeon;Park, Yoonmee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.6
    • /
    • pp.891-909
    • /
    • 2019
  • This study uses a documentary survey, field survey and textile's characteristics to understand the history of the Punggi Viscose Rayon. Punggi's textile industry grew as people migrated from Pyeongan Province in the 1900s. Little is known regarding early production conditions, but documents show cottage industries in the 1940s made union cloth using silk and rayon. The Punggi weaving industry peaked after the Korean War and declined in the late 1950s. Punggi rayon at that time was mainly used for lingerie or lining, with miliary or polka dot patterns. The industry regained momentum when the power loom was introduced in the 1960s. Manufacturers also started weaving union cloth with synthetic fibers and rayon. In the 1990s, jacquard looms enabled the weaving of elaborately colored and patterned textiles for outer fabric that made Punggi rayon famous. Most Punggi rayon looms have developed in the order of manual handlooms, semiautomatic looms, Jokdapgi, to power looms. Looms equipped with dobbies or jacquard devices also changed from wooden dobby looms to wooden jacquard looms and then to iron jacquard looms. Punggi Rayon currently has its own trademark and tag, but lacks specific regulations on the blending of fibers.