• Title/Summary/Keyword: Synthesized carbon

Search Result 1,168, Processing Time 0.027 seconds

A Studyon Synthesis of High Purity $\beta$-SiC Fine Particles from Ethyl Silicate(II) (Powder Properties, Reaction Type and Activation Energy) (Ethyl Silicate를 이용한 고순도 $\beta$-SiC미분말 합성에 관한 연구(II) (분말의 특성, 반응형식 및 활성화에너지))

  • 최용식;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.195-200
    • /
    • 1989
  • The Silica-Carbon mixture was made with addition of carbon black in the composition which monodispersed spherical fine silica was formed by the hydrolysis of ethylsilicate, mole ratio of Carbon/Alkoxide was 3.1 and $\beta$-SiC powder was synthesized by reacting this mixture at 1,350~1,50$0^{\circ}C$ in Ar atmosphere. The results of this study are as follow : (1) The purity of synthesized $\beta$-SiC powder was above 99.98% and it was in cubic modification with lattice constant of 4.3476$\AA$. (2) The rate-controlling steps varied with the reaction temperature for the syntehsis of $\beta$-SiC in this study ; nucleation and growth of $\beta$-SiC at 1,350~1,40$0^{\circ}C$, interfacial reaction at 1,45$0^{\circ}C$ and diffusion described by Jander Equation at 1,50$0^{\circ}C$. (3) When the rate-determining step was nucleation and growth, the activation energy was about 87.8kcal/mol.

  • PDF

Micro-Structural and Electrochemical Properties of Activated Carbon Synthesized from Natural Bamboo (천연 대나무로부터 합성된 활성 탄소의 미세구조 및 전기화학적 특성)

  • YANG, DONG-CHEOL;KIM, SU-WON;CHOURASHIYA, M.G.;PARK, CHOONG-NYEON;PARK, CHAN-JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.418-427
    • /
    • 2019
  • Activated carbon was synthesized from bamboo charcoal by KOH activation at various temperatures for electrochemical double layer capacitor applications. The micro-structural and surface properties of all the samples were characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption/desorption isotherm method. The electrochemical properties of the activated bamboo charcoal were examined by cyclic voltammetry in the potential window of -1.0 to 0.2 V in 6 M KOH electrolyte at different scan rates. An electrode made from the sample activated with 7.5 M KOH and heat treated at $750^{\circ}C$ for 3 h gave a maximum capacitance of 553 F/g at 1 mV/s and 450 F/g at 10mV/s.

Characterization of Electric Double-Layer Capacitors with Carbon Nanotubes Directly Synthesized on a Copper Plate as a Current Collector (구리 집전판에 직접 합성한 탄소나노튜브의 전기이중층 커패시터 특성)

  • Jung, Dong-Won;Lee, Chang-Soo;Park, Soon;Oh, Eun-Souk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.419-424
    • /
    • 2011
  • Carbon nanotubes (CNTs) were directly synthesized on a copper (Cu) plate as a current collector by the catalytic thermal vapor deposition method for an electric double-layer capacitor (EDLC) electrode. The diameters of vertically aligned CNTs grown on the Cu plate were 20~30 nm. From cyclic voltammetry (CV) results, the CNTs/Cu electrode showed high specific capacitance with typical profiles of EDLCs. Rectangularshaped CV curves suggested that the CNTs/Cu electrode could be an excellent candidate for an EDLC electrode. The specific capacitances were in a range of 25~75 F/g with a scan rate of 10~100 mV/s and KOH electrolyte concentration 1~6 M, and were maintained up to 1000 charge/discharge cycles due to strong adhesion between the Cu substrate and the CNTs.

Application of Suspension-Polymerized Spherical PAN beads as a Precursor of Spherical Activated Carbon (현탁중합으로 합성된 구형 PAN 수지의 구형 활성탄의 전구체로서의 활용)

  • Hyewon, Yeom;Hongkyeong, Kim
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2022
  • Polyacrylonitrile was synthesized through suspension polymerization and then sieved to obtain spherical beads with a size of 200~510 ㎛. PAN was copolymerized with 2 mol% MMA monomer which is known to promote cyclization and crosslinking of nitrile group. The resonance cyclization reaction of the nitrile group in the synthesized PAN beads was observed near 170℃ with thermal analysis and FT-IR. The reaction conversion of the nitrile group in spherical beads was 23% during heat treatment, which was lower than that of the well-oriented PAN fiber used as a precursor of carbon fiber. This is because the stereo-regularity of molecular chains in the form of a random coil (spherical bead) is much lower than that of PAN fiber. It was confirmed that the compressive strength of the spherical PAN bead was greatly improved through the resonance cyclization and shrinkage according to the heat treatment, and it was also observed that the pores in PAN beads were formed after the heat treatment.

Synthetic Studies Related to Ezomycins and Octosyl Acids. Synthesis of Heptofuranose Nucleosides

  • Kim, Kwan-Soo;Kang, Shang-Mo;Kim, Sung- Jung;Jung, Kyu-Seong;Hahn, Chi-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.350-354
    • /
    • 1985
  • 1-[Ethyl (E)-5,6-dideoxy-2,3-O-isopropylidene-$\beta$-D-ribo-hept-5-enofuranosyluronate] uracil(12) was synthesized. Other various heptofuranose uncleosides were also synthesized from uridine and adenosine by two-carbon chain extension using Witting reaction.

A Study on the Growth Morphology of VGCF Nano-Materials by Acetylene Pyrolysis over Stainless Steel Catalyst - Effect of Reduction Pretreatment and Hydrogen Supply (스테인리스 스틸 촉매 상에서 아세틸렌 분해에 의한 VGCF 나노물질의 성장 형태 연구 - 환원 전처리 및 수소공급 효과)

  • Park, Seok Joo;Lee, Dong Geun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.563-571
    • /
    • 2006
  • Vapor grown carbon fiber (VGCF) nano-materials such as carbon nanotubes and carbon nanofibers were directly grown on the surface of the stainless steel mesh pre-treated by reduction. The reduction of the stainless steel mesh by hydrogen formed small catalytic particles and large particles with bi-modal distribution on the metal surface. When the VGCFs were synthesized on the reduced mesh, carbon nanotubes (CNTs) were dominantly grown from the small catalytic particles without supplying hydrogen gas. However, carbon nanofibers (CNFs) were dominantly grown from the large catalytic particles with hydrogen.

Characterization of Metal(Cu, Zn)-Carbon/TiO2 Composites Derived from Phenol Resin and their Photocataytic Effects

  • Oh, Won-Chun;Bae, Jang-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.196-203
    • /
    • 2008
  • Metal-carbon/$TiO_2$ composite photocatalysts were thermally synthesized through the mixing of anatase to metal(Cu, Zn) containing phenol resin in an ethanol solvent coagulation method. The BET surface area increases, with the increase depending on the amount of metal salt used. From SEM images, metal components and carbon derived from phenol resin that contains metal was homogeneously distributed to composite particles with porosity. XRD patterns revealed that metal and titanium dioxide phase can be identified for metal-carbon/$TiO_2$ composites, however, the diffraction peaks of carbon were not observed due to the low carbon content on the $TiO_2$ surfaces and due to the low crystallinity of the amorphous carbon. The results of a chemical elemental analysis of the metal-carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for C, O, treated metal components and Ti metal compared to that of any other elements. According to photocatalytic results, the MB degradation can be attributed to the three types of synergetic effect: photocatalysis, adsorptivity and electron transfer, according to the light absorption between the supporter $TiO_2$, metal species, and carbon layers.

Synthesis of Graphene Using Thermal Chemical Vapor Deposition and Application as a Grid Membrane for Transmission Electron Microscope Observation (열화학증기증착법을 이용한 그래핀의 합성 및 투과전자현미경 관찰용 그리드 멤브레인으로의 응용)

  • Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • We present a method of graphene synthesis with high thickness uniformity using the thermal chemical vapor deposition (TCVD) technique; we demonstrate its application to a grid supporting membrane using transmission electron microscope (TEM) observation, particularly for nanomaterials that have smaller dimensions than the pitch of commercial grid mesh. Graphene was synthesized on electron-beam-evaporated Ni catalytic thin films. Methane and hydrogen gases were used as carbon feedstock and dilution gas, respectively. The effects of synthesis temperature and flow rate of feedstock on graphene structures have been investigated. The most effective condition for large area growth synthesis and high thickness uniformity was found to be $1000^{\circ}C$ and 5 sccm of methane. Among the various applications of the synthesized graphenes, their use as a supporting membrane of a TEM grid has been demonstrated; such a grid is useful for high resolution TEM imaging of nanoscale materials because it preserves the same focal plane over the whole grid mesh. After the graphene synthesis, we were able successfully to transfer the graphenes from the Ni substrates to the TEM grid without a polymeric mediator, so that we were able to preserve the clean surface of the as-synthesized graphene. Then, a drop of carbon nanotube (CNT) suspension was deposited onto the graphene-covered TEM grid. Finally, we performed high resolution TEM observation and obtained clear image of the carbon nanotubes, which were deposited on the graphene supporting membrane.

Mechanism on the Synthesis of Titanium Carbide by SHS (Self-Propagating High-Temperature Synthesis) Method (자체반응열 고온합성법에 의한 탄화티타늄 합성에 관한 메카니즘)

  • Ha, Ho;Hwang, Gyu-Min;Han, Hee-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1249-1258
    • /
    • 1994
  • Titanium carbide was synthesized by reacting the prepared titanium powder and carbon black using SHS method sustains the reaction spontaneously, utilizing heat generated by the exothermic reaction itself. In this process, the effect of the particle size of titanium powder on combustion temperature and combustion wave velocity was investigated. By controlling combustion temperature and combustion wave velocity via mixing Ti and C powder with TiC, the reaction kinetics of TiC formation by SHS method was considered. Without reference to the change of combustion temperature and combustion wave velocity, TiC was easily synthesized by combustion reaction. As the particle size of titanium powder was bigger, or, as the amount of added diluent(TiC) increased, combustion temperature and combustion wave velocity were found to be decreased. The formation of TiC by combustion reaction in the Ti-C system seems to occur via two different mechanisms. At the beginning of the reaction, when the combustion temperatures were higher than 2551 K, the reaction was considered to be controlled by the rate of dissolution of carbon into a titanium melt with an apparent activation energy of 148 kJ/mol. For combustion temperatures less than 2551 K, it was considered to be controlled by the atomic diffusion rate of carbon through a TiC layer with an apparent activation energy of 355 kJ/mol. The average particle size of the synthesized titanium carbide was smaller than that of the starting material(Ti).

  • PDF