• Title/Summary/Keyword: Synthesis gas

Search Result 880, Processing Time 0.03 seconds

Development of High Pressure Membrane-Based Associated Gas Separation System for DME Synthesis (DME 합성을 위한 고압 유휴가스 분리용 Membrane 시스템 개발)

  • Kim, Hackeun;Bae, Myongwon;Lee, Sangjin;Ha, Seongyong;Lee, Chungseop;Mo, Yonggi
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • The objective of this study is to develop a gas pro-treatment system for DME synthesis, wherein this system separates $CO_2$ from Flaring gas as Membrane, in order to save raw material ($CH_4$) cost of DME. In this study, hollow fiber membrane is developed, which is able to separate high-pressure gas, supported by polysulfone and coated with amorphous fluorinated polymer. Throughout the evaluation of the membrane's separation characteristics, the membrane is applied to this system. The membrane is designed by 2 stages for over 90% removal rate of $CO_2$ and over 90% recovery rate of $CH_4$. The bench scale of pro-treatment system is developed as $25Nm^3/hr$.

Fermentation Characteristics and Microbial Protein Synthesis in an In Vitro System Using Cassava, Rice Straw and Dried Ruzi Grass as Substrates

  • Sommart, K.;Parker, D.S.;Rowlinson, P.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1084-1093
    • /
    • 2000
  • An in vitro gas production system was used to investigate the influence of various substrate mixtures on a natural mix of rumen microbes by measurement of fermentation end-products. The treatments were combinations of cassava (15.0, 30.0 and 45.0%) with different roughage sources (ruzi grass, rice straw or urea treated rice straw). Microbial biomass, net $^{15}N$ incorporation into cells, volatile fatty acid production, gas volume and rate of gas production increased linearly with increasing levels of cassava inclusion. There was also an effect of roughage source, with rice straw being associated with the lowest values for most parameters whilst similar values were obtained for ruzi grass and urea treated rice straw. The results suggest that microbial growth and fermentation rate increase as a function of readily available carbohydrate in the substrate mixture. A strong linear relationship between $^{15}N$ enrichment, total volatile fatty acid production and gas production kinetics support the suggestion of the use of the in vitro gas production system as a tool for screening feedstuffs as an initial stage of feed evaluation.

Effect of Support on Synthesis Gas Production of Supported Ni Catalysts (니켈 담지촉매를 이용한 합성가스 제조 시 담체의 영향)

  • Kim, Sang-Bum;Park, Eun-Seok;Cheon, Han-Jin;Kim, Young-Kook;Lim, Yun-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.289-295
    • /
    • 2003
  • Synthesis gas is produced commercially by a steam reforming process. However, the process is highly endothermic and energy intensive. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to cut down the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at $750{\sim}850^{\circ}C$ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and $H_2$ and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best $MgNiO_2$ solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.

Synthesis and characterization of visible light active photocatalytic $TiO_2$

  • Kim, Duk-Su;Park, Kyu-Sung;Kim, Il-Doo;Kim, Ho-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1116-1120
    • /
    • 2002
  • Using thermal hydrolysis and hydrothermal treatment, photocatalytic $TiO_2$ powders were synthesized. During the synthesis, the addition of other transition metals such as iron, copper, etc., affected the photocatalytic capability of synthesized powders, and enabled the activation by visible light. To enhance photocatalytic capacity of gas phase decomposition, the rate-determining adsorption rate of pollutant gases were improved via surface modification of $TiO_2$ powders. The surface modifiers were implanted using mechanochemical synthesis of dopants and photocatalytic powders.

  • PDF

A Study of Loss Prevention for Methanol Synthesis Process Based on Exergy Analysis (엑서지 해석에 기초한 메탄올합성공정의 손실예방책 연구)

  • Cho, Hyo-Eun;Chung, Yonsoo
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.129-137
    • /
    • 2000
  • A methanol synthesis process via reverse-water-gas-shift and methanol formation reactions has been analyzed using the notion of exergy. The analysis has been based on the simulation results with the aid of real operating data. Driving and material exergy losses have been defined and quantified, respectively. Locations and the reason of major exergy losses have been pinpointed and improvement strategies have been suggested. It had been noted that the exergy analysis can provide a sound scientific base for adopting the concept of industrial ecology and developing loss prevention schemes.

  • PDF

Recycle of Carbon Dioxide Using Dry Reforming of Methane (메탄의 건식 개질을 이용한 이산화탄소의 재활용)

  • Kim, Jeongmook;Ryu, Jun-hyung;Lee, In-Beum;Lee, Jae Sung
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Considerable attention has been given to developing methodologies to reduce the emission of carbon dioxide from industry to meet strengthened environmental regulations. In this article, recent research trends on dry reforming of methane as an alternative method to reduce $CO_2$ emission from large scale industrial processes are addressed. To efficiently provide the energy needed in this strong endothermic reaction without additional $CO_2$ emission, it seems to be desirable to adopt autothermal reaction mode. The produced synthesis gas could be used as a reducing gas, or a feedstock for synthesis of chemicals and fuels.

Production of synthesis gas by gasification of pyrolyzed gas of RPF in a lab-scale reactor (Lab-scale 반응기에서 RPF 열분해 가스의 가스화에 의한 합성 가스의 생성에 대한 연구)

  • Bae, Su-Woo;Seo, Dong-Kyun;Kang, Pil-Sun;Song, Soon-Ho;Yu, Tae-U;Hwang, Jung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.618-622
    • /
    • 2007
  • This paper provides RPF (Refuse Plastics Fuel) gasification characteristics for generating synthesis gas in gasfying reactor which was design in lab-scale. This research is carried out as an immediate work for making pyrolysis gas from RPF into energy resource. This study is consisted of experimental and numerical. The numerical study was accomplished from RPF pyrolysis data, and predicted the maximum operating conditions by STANJAN and FLEUNT. Based on results of STANJAN, it is found that the maximum point of $O_2/O_{2,stoich}$=20${\sim}$30, which is used as injection point of $O_2$. Experiment results shows that CO and $H_2$ were increased but THC was decreased as temperature was increased. It is estimated that the cracking of cracking of THC into CO and H2 is happened at a high temperature. It is observed that as steam was injected, production of CO and H2 were increased, then, H2 is dependent on the amount of injectionsteam.

  • PDF

A Study on Cu Based Catalysts for Water Gas Shift Reaction to Produce Hydrogen from Waste-Derived Synthesis Gas (폐기물 가스화 합성가스로부터 수소 생산을 위한 수성가스전이 반응용 Cu 기반 촉매 연구)

  • Na, Hyun-Suk;Jeong, Dae-Woon;Jang, Won-Jun;Lee, Yeol-Lim;Roh, Hyun-Seog
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.227-233
    • /
    • 2014
  • Simulated waste-derived synthesis gas has been tested for hydrogen production through water-gas shift (WGS) reaction over supported Cu catalysts prepared by co-precipitation method. $CeO_2$, $ZrO_2$, MgO, and $Al_2O_3$ were employed as supports for WGS reaction in this study. $Cu-CeO_2$ catalyst exhibited excellent catalytic activity as well as 100% $CO_2$ selectivity for WGS in severe conditions ($GHSV=40,206h^{-1}$ and CO concentration = 38.0%). In addition, $Cu-CeO_2$ catalyst showed stable CO conversion for 20h without detectable catalyst deactivation. The high activity and stability of $Cu-CeO_2$ catalyst are correlated to its easier reducibility, high oxygen mobility/storage capacity of $CeO_2$.

A Effect of Reaction Conditions on Syngas Yield for the Preparation of Syngas from Landfill Gas (매립지가스(LFG)로부터 합성가스 제조시 반응조건에 따른 수율에 미치는 연구)

  • CHO, WOOKSANG;CHOI, KEONGDON;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.477-483
    • /
    • 2015
  • LFG (Land-Fill Gas) includes components of $CH_4$, $CO_2$, $O_2$, $N_2$, and water. The preparation of synthesis gas from LFG as a DME (Dimethyl Ether) feedstock was studied by methane reforming of $CO_2$, $O_2$ and steam over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Our experiments were performed to investigate the effects of methane conversion and syngas yield on the amount of LFG components over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Results were obtained through the methan reforming experiments at the temperature of $900^{\circ}C$ and GHSV of 8,800. The results were as following; it has generally shown that syngas yield increase with the increase of oxygen and steam amounts and then decrease. Highly methane conversion of above 98% and syngas yield of approximately 60% were obtained in the feed of gas composition flow-rate of 243ml/min of $CH_4$, 241ml/min of $CO_2$, 195ml/min of $O_2$, 48ml/min of $N_2$, and 450ml/min of steam, respectively, under reactor pressure of 1 bar for 200 hrs of reaction time. Also, it was shown that catalyst deactivation by coke formation was reduced by excessively adding oxygen and steam as an oxidizer of the methane reforming.