• Title/Summary/Keyword: Synthesis Photoluminescence

Search Result 274, Processing Time 0.023 seconds

A New Approach to Synthesis and Photoluminescence of Silicon Nanoparticles

  • Kim, Beomsuk
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.28-31
    • /
    • 2009
  • We describe the synthesis and characterization of silicon nanoparticles prepared by the soluton reduction of SiCl4. These reactions produce Si nanoparticles with surfaces that are covalently terminated. The resultant organic derivatized Si nanoparticles as well as a probable distribution of Water-soluble Si nanoparticles are observed and characterized by photoluminescence(PL) spectroscopy. This work focuses originally on the organic- and water-soluble silicon nanoparticles in terms of the photoluminescence. Further this work displays probably the first layout of hydrogen terminated Si nanoparticles synthesized in solution at room temperature.

  • PDF

Synthesis and Photoluminescence Studies on Sr1-xBaxAl2O4 : Eu2+, Dy3+

  • Ryu, Ho-Jin;Singh, Binod Kumar;Bartwal, Kunwar Singh
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.146-149
    • /
    • 2008
  • Strontium-substituted $Sr_{1-x}Ba_xAl_2O_4:Eu^{2+},\;Dy^{3+}$ compositions were prepared by the solid state synthesis method. These compositions were characterized for their phase, crystallinity and morphology using powder x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Photoluminescence properties were investigated by measuring excitation spectra, emission spectra and decay time for varying Ba/Sr concentrations. Photoluminescence results show higher luminescence and long decay time for $Sr_{1-x}Ba_xAl_2O_4:Eu^{2+},\;Dy^{3+}$(x=0). This is probably due to the influence of the 5d electron states of $Eu^{2+}$ in the crystal field. Long persistence was observed for these compositions due to $Dy^{3+}$ co-doping.

Synthesis and Characterization of CdSe Quantum Dot with Injection Temperature and Reaction Time (Injection 온도 및 합성시간에 따른 CdSe 양자점 합성 및 특성)

  • Eom, Nu-Si-A;Kim, Taek-Soo;Choa, Yong-Ho;Kim, Bum-Sung
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.140-144
    • /
    • 2012
  • Compared with bulk material, quantum dots have received increasing attention due to their fascinating physical properties, including optical and electronic properties, which are due to the quantum confinement effect. Especially, Luminescent CdSe quantum dots have been highly investigated due to their tunable size-dependent photoluminescence across the visible spectrum. They are of great interest for technical applications such as light-emitting devices, lasers, and fluorescent labels. In particular, quantum dot-based light-emitting diodes emit high luminance. Quantum dots have very high luminescence properties because of their absorption coefficient and quantum efficiency, which are higher than those of typical dyes. CdSe quantum dots were synthesized as a function of the synthesis time and synthesis temperature. The photoluminescence properties were found strongly to depend on the reaction time and the temperature due to the core size changing. It was also observed that the photoluminescence intensity is decreased with the synthesis time due to the temperature dependence of the band gap. The wavelength of the synthesized quantum dots was about 550-700 nm and the intensity of the photoluminescence increased about 22~70%. After the CdSe quantum dots were synthesized, the particles were found to have grown until reaching a saturated concentration as time increased. Red shift occurred because of the particle growth. The microstructure and phase developments were measured by transmission electron microscopy (TEM) and X-ray diffractometry (XRD), respectively.

Synthesis and Surface-derivatization of Silicon Nanoparticles and their Photoluminescence and Stability

  • Lee, Sung-Gi;Lee, Bo-Yeon;Hwang, Minwoo;Cho, Hyun;Kim, Hee-Chol;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.4 no.4
    • /
    • pp.282-288
    • /
    • 2011
  • We describe the synthesis and characterization of silicon nanoparticles prepared by the solution reduction of silicon tetrachloride by lithium naphthalenide and subsequently with n-butyllithium at room temperature. These reactions produce silicon nanoparticles with surfaces that are covalently terminated with butyl group. Reaction with lithium aluminium hydride instead of n-butyllithium produces hydride-terminated silicon nanoparticles. The butyl or hydride terminated silicon nanoparticles can be suspended in hexane and their optical behavior have been characterized by photoluminescence spectroscopy. Stabilization of silicon nanoparticles were investigated upon illumination, indicating that as-prepared silicon nanoparticles are very stable at room temperature for several days.

A Study on Phosphor Synthetic and Low Temperature Photoluminescence Spectrum (저온 photoluminescence 스펙트럼 및 형광체 합성에 관한 연구)

  • Kim, Soo-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.10-16
    • /
    • 2010
  • In this paper, synthesis here Mn add to Ar injection the state and a vacuum an atomosphere $ZnGa_2O_4$ : Mn, ZnO and $Ga_2O_3$ power of 1 : 1 mole ratio mixture. Manufacture a close examination of oxygen a component variation luminescence a specific character reach an in fluence of $ZnGa_2O_4$ : Mn, luminescence spectrum observation also an explanation of Mn site symmetry and at luminescence spectrum reach an influence from low temperature photoluminescence spectrum.

The Effect of Pretreatment of Raw Powders on the Photoluminescence of Ca-α-SiAlON:Eu2+ Phosphor

  • Park, Young-Jo;Kim, Jin-Myung;Lee, Jae-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.413-417
    • /
    • 2014
  • The effect of calcination treatment of raw powders prior to high temperature synthesis of Ca-${\alpha}$-SiAlON:$Eu^{2+}$ phosphor was investigated. Based on data acquired from thermogravimetric analysis, calcination temperatures were set at 600, 750, and $900^{\circ}C$. Compared to the photoluminescence (PL) intensity of direct synthesis without calcination, a similar intensity was found for the $600^{\circ}C$ treatment, a 19% increased PL intensity was found for the $750^{\circ}C$ treatment, and a 23% decreased PL intensity was found for the $900^{\circ}C$ treatment. Observation of the particle morphology of the synthesized phosphors revealed that the material transport promoted through the agglomerates formed by the $750^{\circ}C$ treatment led to enhanced PL intensity. On the other hand, the oxidation of the starting AlN particles during the $900^{\circ}C$ treatment resulted in decreased photoluminescence.

Synthesis and Photoluminescence of Silole Derivatives

  • Sharma, Arun Kumar;Lee, Sung-Gi;Um, Sungyong;Cho, Bomin;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.176-180
    • /
    • 2013
  • The syntheses of 9,9'-spiro-9-silabifluorene as well as 1,1-dichloro-1-silafluorene and 1,1-dimethyl-1-silafluorene through the formation of 2,2'-dibromobiphenyl have been emphasized with good yields. Their fluorescence spectra are obtained using photoluminescence spectrometer and assumed to be the precursors of the development of polymers.

Hydrothermal synthesis and photoluminescence properties of nanocrystalline $GdBO_3:Eu^{3+}$ phosphor

  • Kim, Tae-Hyung;Kang, Shin-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.717-720
    • /
    • 2005
  • Nanocrystalline $GdBO_3:Eu^{3+}$ was prepared by a hydrothermal method. The as-synthesized powders were spherical shaped agglomerates of nano particles. The luminescent properties were compared with samples synthesized by conventional solid-state reaction method. Both the photoluminescence intensity and chromaticity were improved and a red-shift in the CT band was observed for the hydrothermally synthesized samples.

  • PDF

Synthesis and Optically Characterization of CdSe Nanocrystal (CdSe 나노입자의 합성과 광학 특징)

  • Kim, Chanyoung;Kim, Sunghyun;Jung, Daehyuk
    • Journal of Integrative Natural Science
    • /
    • v.1 no.3
    • /
    • pp.250-253
    • /
    • 2008
  • New issues arise as to surface characterization, quantification and interface formation. Surface and interface control of CdSe nanocrystal systems, one of the most studied and useful nanostructures. Semiconductor quantum dots (QDs) have been the subject of much interest for both fundamental reseach and technical applications in recent years, due mainly to their strong size dependent properties and excellent chemical processibility. In this dissertation, the synthesis of CdSe quantum dots were synthesized by pyrolysis of high-temperature organometallic reagents. In order to modify the size and quality of quantum dots, we controlled the growth temperature and the relative amount of precursors to be injected into the coordinating solvent. Moreover, an effective surface passivation of monodisperse nanocrystals was achieved by overcoating them with a higher-band-gap material. Synthesized CdSe quantum dots were studied to evaluate the optical, electronic and structural properties using UV-absorption, and photoluminescence measurement.

  • PDF