• 제목/요약/키워드: Syngas production

검색결과 120건 처리시간 0.026초

CGO 담지 귀금속 촉매를 이용한 DME 자열개질 특성 연구 (Experiment of DME autothermal reforming with CGO-based catalysts)

  • 최승현;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.158.2-158.2
    • /
    • 2011
  • DME is acronym of dimethyl ether, which is spotlighted as an ideal fuel to produce hydrogen due to its high hydrogen/carbon ratio, high energy density and easiness to carry. In this research, we calculated thermodynamic hydrogen (or syngas) yield from DME autothermal reforming and compared to other fuels. The reforming efficiency was about 80% above $700^{\circ}C$. Lower OCR has higher reforming efficiency but, it requires additional heat supply since the reactions are endothermic. SCR has no significant effect on the reforming efficiency. The optimized condition is $700^{\circ}C$, SCR 1.5, OCR 0.45 without additional heat supply. Comparing to other commercial gaseous fuels (methane and propane), DME has higher selectivity of $H_2O$ and $CO_2$ than the others due to the oxygen atom in the molecule. To apply DME autothermal reforming to real system, a proper catalyst is required. Therefore, it is performed the experiment comparing various novel metal catalysts based on CGO. Experiments were performed at calculated condition. The composition of product was measured and reforming efficiency was calculated. The catalysts have similar efficiency at high temperature(${\sim}800^{\circ}C$) but, CGO-Ru has the highest efficiency at low temperature ($600^{\circ}C$).

  • PDF

석탄, 석탄 촤, 바이오매스 등의 고체시료 가스화 반응을 통해 발생된 합성가스를 이용한 SNG 제조공정 연구 (SNG Production Process Study in the gasification system with various feedstock)

  • 김수현;유영돈;김문현;김나랑;김형택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.779-783
    • /
    • 2007
  • 본 연구에서는 가스화공정과 수성가스 전환공정, $CO_2$ 분리공정, 메탄화 공정을 주요 구성으로 한 대체(또는 합성)천연가스(SNG, Substitute or Synthetic Natural Gas)제조공정을 대상으로 석탄, 석탄 촤, 바이오매스 등의 다양한 고체시료를 적용하였을 경우 각 시료의 가스화 반응을 통해 얻어진 합성가스를 이용한 SNG 제조 공정 특성을 파악하고자 하였다. 석탄, 석탄 촤, 바이오매스를 적용한 SNG 공정해석 결과 가스화 공정, 수성가스 전환 공정, 메탄화 공정의 운전 용도가 각 800도, 450도, 300도이고, 수성가스 전환 공정 출구의 합성가스 $H_2$/CO ratio(mol basis)가 3인 조건에서 SNG/Feed ratio는 석탄, 석탄 촤, 바이오매스가 각각 0.35, 0.34, 0.08로 나타났고. SNG Efficiency(%) 는석탄, 석탄 촤 바이오매스에 대해서 각각 61.2%. 48.2%, 17.5%로 나타났다. 또한, 석탄 촤를 대상으로 가스화 공정에서의 산화제 투입 조건 및 스팀 투입조건의 변화에 따른 합성가스 발생 특성을 살펴보았다.

  • PDF

합성액화연료 생산 기술: Fischer-Tropsch 합성용 촉매 (Synfuel Production Technology : Catalyst for Fischer-Tropsch Synthesis)

  • 박조용
    • 한국응용과학기술학회지
    • /
    • 제30권4호
    • /
    • pp.726-739
    • /
    • 2013
  • 피셔-트롭쉬 합성 반응은 촉매 표면에서 합성가스 (CO+$H_2$)를 탄화수소로 전환하는 반응이다. 코발트 또는 철계 촉매는 친환경적인 디젤 연료를 생산할 수 있고 합성가스의 전환율이 높은 촉매로 알려져 있다. 피셔-트롭쉬 반응에 사용되는 촉매의 활성은 촉매 표면에서의 활성점에 의존적이다. 활성점은 활성 물질의 크기, 담지량, 환원율, 지지체와 활성물질의 상호작용에 의해 결정된다. FT 촉매 제조 방법으로 활성물질의 크기를 조절하는 등의 새로운 방법들이 시도되고 있다. 여기에서는 촉매의 제조방법과 환원 특성을 비롯한 촉매의 형태와 반응 조건을 포함한 반응기 형태에 대해 알아보겠다.

메탄의 무촉매 부분산화를 통한 합성가스 제조 연구 (A Study on Syngas Production By Noncatalytic Partial Oxidation of Methane)

  • 나익환;양동진;채태영;;방병열;양원
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.337-343
    • /
    • 2009
  • Noncatalytic partial oxidation of methane for producing synthesis gas was studied in a lab-scale experimental apparatus. Partial oxidation developed for high-temperature, fuel-rich combustion and it is exothermic process. but Steam reforming and Caron reforming is highly endothermic process to need much energy. Noncatalytic partial oxidation of methane is affected by temperature and equivalent ratio, so we studied effect about composition of synthesis gas at lab scale reactor. We used electronic heater to control the temperature of reactor. The quality of synthesis gas is improved and reduced heat value to require at Noncatalytic partial oxidation because the reacting temperature is lower at oxy condition.

천연가스의 수증기 및 이산화탄소 복합 개질을 이용한 수소 생산 공정 개발 (Development of hydrogen production process using combined steam and $CO_2$ reforming of natural gas)

  • 서유택;서동주;노현석;정운호;구기영;장원진;윤왕래
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.75-78
    • /
    • 2007
  • 천연가스의 수증기 및 이산화탄소 복합 개질은 탄화수소화합물과 이산화탄소를 원료로 사용하여 수소를 생산하는 공정으로, 온실가스로 지목되고 있는 주요 화합물을 수소와 일산화탄소 혼합 가스로 전환시켜 합성 반응 또는 연료전지에 사용할 수 있도록 해준다. 본 연구에서는 $MgAl_2O_4$를 지지체로 하는 니켈계 촉매를 제조하여 수증기 및 이산화탄소 복합 개질 반응에 사용하였으며, 기존의 수증기 개질촉매 적용 시 문제가 되었던 탄소 침적에 의한 촉매 비활성화를 피할 수 있었다. 개발된 촉매 레시피를 바탕으로 펠릿 촉매를 제조하여 0.1 bpd규모의 Fischer-Tropsch 합성 반응에 적용 가능한 튜브형 반응기에 적용하여 수증기 및 이산화탄소 복합 개질 반응을 실시하였으며, 반응기의 온도 구배, 가스 조성 변화를 관찰하였다. 반응 조건에 따른 촉매 및 반응기의 성능 최적화를 실시하여 최적 촉매 및 반응기 성능을 모색하고자 하였다.

  • PDF

Adsorption and Thermal Reduction Mechanism of CO2 on ZnO/Cu Model Catalysts

  • Kim, Yeonwoo;Kim, Sehun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.191.2-191.2
    • /
    • 2014
  • Cu/ZnO/$Al_2O_3$ is widely used methanol synthesis catalyst at elevated pressures P (50 to 100 bar) and temperatures T (473 to 573 K) using $CO_2$, CO, $H_2$ syngas mixture. Although Cu step and planar defects have been regarded as active sites in this catalyst, detailed $CO_2$ hydrogenation procedure has been still unknown and debated as well as initial intermediate. In this study, we investigated the mechanism of $CO_2$ hydrogenation on Cu(111) model surface at P (1 bar) and T (298 to 450 K) using reflection absorption infrared spectroscopy (RAIRS). Two distinct formates by hydrogenation of $CO_2$, on step and on terrace, show different behavior with elevating temperature. The peak intensity of on step formate was continuously decreased above 360 K up to 450K in contrast to the increase of on terrace formate. These phenomena are strong possibilities that the formate is initial intermediate and is desorbed by hydrogenation reaction because thermal desorption temperature of formate (~470 K) is much higher than desorption of on step formate. And the formate production peak of on step site was weakly correlated with CO formation.

  • PDF

천연가스와 바이오매스로부터 개선된 DME 공정의 개발 (Development of Innovation DME Process from Natural Gas and Biomass in KOREA)

  • 조원준;송택용;백영순;김승수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.107-107
    • /
    • 2010
  • Hydrogen is an alternative fuel for the future energy which can reduce pollutants and greenhouse gases. Synthesis gas have played an important role of synthesizing the valuable chemical compound, for example methanol, DME and GTL chemicals. Renewable biomass feedstocks can be potentially used for fuels and chemical production. Current thermal processing techniques such as fast pyrolysis, slow pyrolysis, and gasification tend to generate products with a large slate of compounds. Lignocellulose feedstocks such as forest residues are promising for the production of bio-oil and synthesis gas. Pyrolysis and gasification was investigated using thermogravimetric analyzer (TGA) and bubbling fluidized bed gasification reactor to utilize forest woody biomass. Most of the materials decomposed between $320^{\circ}C$ and $380^{\circ}C$ at heating rates of $5{\sim}20^{\circ}C/min$ in thermogravimetric analysis. Bubbling fluidized bed reactor were use to study gasification characteristics, and the effects of reaction temperature, residence time and feedstocks on gas yields and selectivities were investigated. With increasing temperature from $750^{\circ}C$ to $850^{\circ}C$, the yield of char decreased, whereas the yield of gas increased. The gaseous products consisted of mostly CO, CO2, H2 and a small fraction of C1-C4 hydrocarbons.

  • PDF

항공분야 온실가스 감축을 위한 바이오항공유 제조기술 (Bio-Jet Fuel Production Technologies for GHG Reduction in Aviation Sector)

  • 김재곤;박조용;임의순;민경일;박천규;하종한
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.609-628
    • /
    • 2015
  • Thie study presents the biomass-derived jet (bio-jet) fuel production technologies for greenhouse gas (GHG) reduction in aviation sector. The aviation sector is responsible for the 2% of the world anthropogenic $CO_2$ emissions and the 10% of the fuel consumption: airlines' costs for fuel reach 30% of operating costs. In addition, the aviation traffic is expected to double within 15 years from 2012, while fuel consumption and $CO_2$ emissions should double in 25 years. Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This jet fuel, additionally, must meet ASTM International specifications and potentially be a100% drop-in replacement for current petroleum jet fuel. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways are reviewed for process, economic analysis and life cycle assessment (LCA) on conversion pathways to bio-jet fuel.

메탄을 이용한 매체 순환 개질 시스템을 위한 Ni-YSZ 촉매에서의 Y에 따른 촉매 반응 특성 연구 (The Effect of Y at Ni-YSZ Catalysts for the Application to the Process of Methane Chemical-Looping Reforming)

  • 김희선;전유권;황주순;송순호;설용건
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.516-523
    • /
    • 2015
  • Nickel based oxygen transfer materials supported on two different YSZs were tested to evaluate their performance in methane chemical-looping reforming. The oxygen transfer materials of YSZs were selected with different amount of the doped yittrium in the $ZrO_2$ structure. The yittrium of 8 mol% stabilized the zirconia oxide to a cubic structure compare to the 3 mol% doping, which is known to be a good for oxygen transfer. Various nickel amounts (16wt.%, 32wt.%, 48wt.%) were loaded on the selected supports. The nickel amount of 32% shows the optimized catalyst structure with good physical properties and reducibility from the XRD, BET and H2-TPR analysis, especially when the support of 8YSZ was used. From the methane chemical-looping reforming, hydrogen was produced by methane decomposition catalyzed by Ni on both YSZs. Comparing two YSZ supports of 3YSZ and 8YSZ during the cycling tests, the catalyst with 8YSZ (Ni 32%) exhibits not only the higher methane conversion and hydrogen production but also a faster reaction rate reaching to the stable point.

석탄 SNG 생산설비의 수성가스전환 공정 분석 (Review on the water-gas shift process for a coal SNG project)

  • 김영도;신용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.75.1-75.1
    • /
    • 2011
  • Coal gasification is considered as one of the most prospective technologies in energy field since it can be utilized for various products such as electricity, SNG (Synthetic Natural Gas or Substitute Natural Gas) and other chemical products. Among those products from coal gasification, SNG is emerging as a very lucrative product due to the rising prices of oil and natural gas, especially in Asian countries. The process of SNG production is very similar to the conventional IGCC in that the overall process is highly dependent on the type of gasifier and coal rank. However, there are some differences between SNG production and IGCC, which is that SNG plant requires higher oxygen purity from oxygen plant and more complex gas cleanup processes including water-gas shift reaction and methanation. Water-gas shift reaction is one of the main process in SNG plant because it is a starting point for the latter gas cleanup processes. For the methanation process, syngas is required to have a composition of $H_2$/CO = 3. This study reviewed various considerations for water-gas shift process in a conceptual design on an early stage like a feasibility study for a real project. The factors that affect the design parameters of water-gas shift reaction include the coal properties, the type of gasifier, the overall thermal efficiency of the plant and so on. Water-gas shift reaction is a relatively proven technology compared to the other processes in SNG plant so that it can reduce technological variability when designing a SNG project.

  • PDF