• Title/Summary/Keyword: Synergistic

검색결과 1,748건 처리시간 0.029초

Trichoderma viride와 Penicillium funiculosum Cellulase 성분효소 간의 상승작용에 관한 연구 (Cross-Synergistic Interactions between Trichoderma viride and Penicillium funiculosum Cellulase)

  • Hong, Jeong-Hwa
    • 한국식품영양과학회지
    • /
    • 제22권3호
    • /
    • pp.340-348
    • /
    • 1993
  • Penicillium funiculosum과 Trichoderma viride cellulase의 정제효소들을 사용하여 cross-synergism을 조사하였다. Exo-exo형 상승작용이 Avicel을 분해하는데 가장 효과적이었으며 exo-endo형은 다소 효과가 떨어졌다. 정제효소성분과 이종의 조효소를 혼합하여 70시간 이상 Avicel을 가수분해하며 생성된 total sugar를 측정한 결과, P. funiculosum cellulase에서 분리정제한 $\beta$-glucosidase 성분효소는 T. viride cellulase와 상승작용을 크게 나타내며 Avicel을 가수분해하였다. 또한, T. viride cellulase에서 분리정제한 exoglucanase 성분효소도 P. funiculosum cellulase의 가수분해능을 크게 향상시켰다. 이와같은 결과로 미루어 볼 때, 이종의 cellulase로 부터 부족한 성분효소를 보충시켜 효소성분비율을 변화시킴으로써 Avicel의 가수분해도를 향상시킬 수 있을 것으로 사료된다. 이 때 최대한 높은 가수분해를 얻기 위하여 여러 형식의 상승작용이 같이 이루어져야할 것이다.

  • PDF

3T3-L1 세포에서 Resveratrol과 Epigallocatechin Gallate(EGCG)의 지방세포 분화 억제에 미치는 시너지 효과 (Synergistic Anti-adipogenic Effects of Resveratrol and Epigallocatechin Gallate in 3T3-L1 Adipocytes)

  • 김연정;곽호경
    • 한국식품영양학회지
    • /
    • 제25권4호
    • /
    • pp.855-862
    • /
    • 2012
  • Resveratrol (RVT) and epigallocatechin gallate (EGCG) individually inhibit adipogenesis in 3T3-L1 adipocytes. The objective was to examine the possibility of interaction between RVT and EGCG, resulting in enhanced inhibition of adipogenesis in 3T3-L1 adipocytes. Preadipocytes were treated with RVT and EGCG individually at 6.25 or $25{\mu}M$ (RVT6.25 or RVT25) and 12.5 or $50{\mu}M$ (EGCG12.5 or EGCG50) and in combination (RVT6.25 + EGCG12.5 and RVT25 + EGCG50). RVT25 as an individual compound decreased lipid accumulation in 3T3-L1 adipocytes by 24%, and RVT25 + EGCG50 further decreased lipid accumulation by 77%. In addition, exposure of 3T3-L1 adipocytes to RVT6.25 + EGCG12.5 and RVT25 + EGCG50 combinations resulted in an enhanced increase of adiponectin release and inhibition of leptin release. Quantitative analysis revealed that the combination of tested materials (RVT6.25 + EGCG12.5 and RVT25 + EGCG50) decreased the expression levels of C/EBP${\alpha}$, PPAR${\gamma}2$, and aP2. These results indicate that the combined treatments with RVT and EGCG produce synergistic effects on inhibiting adipogenesis in 3T3-L1 adipocytes. The overall results suggested that the combining RVT and EGCG might be more capable of exerting antiobesity effects than each individual compound by itself.

In-Vitro, Anti-Bacterial Activities of Aqueous Extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo Against Gram Positive and Gram Negative Bacteria

  • Dashtdar, Mehrab;Dashtdar, Mohammad Reza;Dashtdar, Babak;shirazi, Mohammad khabaz;Khan, Saeed Ahmad
    • 대한약침학회지
    • /
    • 제16권2호
    • /
    • pp.15-22
    • /
    • 2013
  • Objective: Evaluations of the in-vitro anti-bacterial activities of aqueous extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and Shilajita mumiyo against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) and gram-negative bacteria (Escherichia coli, klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa) are reasonable since these ethnomedicinal plants have been used in Persian folk medicine for treating skin diseases, venereal diseases, respiratory problems and nervous disorders for ages. Methods: The well diffusion method (KB testing) with a concentration of $250{\mu}g/disc$ was used for evaluating the minimal inhibitory concentrations (MIC). Maximum synergistic effects of different combinations of components were also observed. Results: A particular combination of Acacia catechu (L.F.) Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo extracts possesses an outstanding anti-bacterial activity. It's inhibiting effect on microorganisms is significant when compared to the control group (P<0.05). Staphylococcus aureus was the most sensitive microorganism. The highest anti-bacterial activity against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) or gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, Proteus mirabilis, and Pseudomonas aeruginosa) was exerted by formula number 2 (table 1). Conclusion: The results reveal the presence of anti-bacterial activities of Acacia catechu, Castanea sativa husk, Ephedra sp. and Mumiyo against gram-positive and gram-negative bacteria. Synergistic effects in a combined formula, especially in formula number 2 (ASLAN$^{(R)}$) can lead to potential sources of new antiseptic agents for treatment of acute or chronic skin ulcers. These results considering the significant anti-bacterial effect of the present formulation, support ethnopharmacological uses against diarrheal and venereal diseases and demonstrate use of these plants to treat infectious diseases.

H1299 인체폐암세포주에서 활성산소종 생성에 의한 황기와 사삼의 항암 시너지 작용 (Reactive Oxygen Species (ROS) Generation Contributes to the Synergistic Anticancer Effect of Astragalus Membranaceus and Adenophora Triphylla Var. Japonica in H1299 Human Lung Carcinoma Cells)

  • 민태린;박현지;박신형
    • 동의생리병리학회지
    • /
    • 제32권3호
    • /
    • pp.157-164
    • /
    • 2018
  • This study was designed to investigate the mechanism of the synergistic anticancer effect of Astragalus membranaceus (AM) and Adenophora triphylla var. japonica (AT) in H1299 human lung carcinoma cells. A combined treatment of ethanol extract of AM (EAM) and AT (EAT) explosively increased the reactive oxygen species (ROS) generation in H1299 cells compared to the single treatment of each of them. Co-treatment of N-acetyl-L-cysteine (NAC) with EAM and EAT markedly enhanced the cell viability and suppressed apoptosis in H1299 cells, suggesting that ROS generation contributed to the anticancer effect of EAM and EAT. Interestingly, the combined treatment of EAM and EAT down-regulated p-AKT in H1299 cells, which was abrogated by NAC treatment. These results clearly indicated that ROS generation mediated the inactivation of AKT. Co-treatment of LY294002 with EAM and EAT significantly reduced the cell viability at a concentration which EAM and EAT didn't show any cytotoxicity. In addition, the recovery of cell viability by co-treatment of NAC with EAM and EAT was quite reversed by LY294002 treatment, which confirmed that the inactivation of AKT played a pivotal role in ROS-mediated apoptosis. Taken together, our results demonstrated that the synergistic anticancer effect of EAM and EAT was mediated by ROS generation and inactivation of AKT. We provide a valuable preclinical data for the development of more effective combination of AM and AT to treat lung cancer.

Combinatorial Antitumor Activity of Oxaliplatin with Epigenetic Modifying Agents, 5-Aza-CdR and FK228, in Human Gastric Cancer Cells

  • Park, Jong Kook;Seo, Jung Seon;Lee, Suk Kyeong;Chan, Kenneth K;Kuh, Hyo-Jeong
    • Biomolecules & Therapeutics
    • /
    • 제26권6호
    • /
    • pp.591-598
    • /
    • 2018
  • Epigenetic silencing is considered to be a major mechanism for loss of activity in tumor suppressors. Reversal of epigenetic silencing by using inhibitors of DNA methyltransferase (DNMT) or histone deacetylases (HDACs) such as 5-Aza-CdR and FK228 has shown to enhance cytotoxic activities of several anticancer agents. This study aims to assess the combinatorial effects of genesilencing reversal agents (5-Aza-CdR and FK228) and oxaliplatin in gastric cancer cells, i.e., Epstein-Barr virus (EBV)-negative SNU-638 and EBV-positive SNU-719 cells. The doublet combinatorial treatment of 5-Aza-CdR and FK228 exhibited synergistic effects in both cell lines, and this was further corroborated by Zta expression induction in SNU-719 cells. Three drug combinations as 5-Aza-CdR/FK228 followed by oxaliplatin, however, resulted in antagonistic effects in both cell lines. Simultaneous treatment with FK228 and oxaliplatin induced synergistic and additive effects in SNU-638 and SNU-719 cells, respectively. Three drug combinations as 5-Aza-CdR prior to FK228/oxaliplatin, however, again resulted in antagonistic effects in both cell lines. This work demonstrated that efficacy of doublet synergistic combination using DNMT or HDACs inhibitors can be compromised by adding the third drug in pre- or post-treatment approach in gastric cancer cells. This implies that the development of clinical trial protocols for triplet combinations using gene-silencing reversal agents should be carefully evaluated in light of their potential antagonistic effects.

Rahnella aquatilis AY2000균 유래의 항 효모물질의 작용양상 (Action Pattern of Anti-Yeast Substance Originated from Rahnella aquatilis Strain AY2000)

  • 박혜지;강민정;이종환;김광현
    • 미생물학회지
    • /
    • 제47권2호
    • /
    • pp.163-166
    • /
    • 2011
  • 항 진균제의 인체에 대한 부작용을 완화시키는 방법은 부작용이 적은 새로운 항 진균제 개발이나 기존 항 진균제와 혼용하여 상승효과를 나타내는 물질이 필요하다. 이를 위해 Rahnella aquatilis AY2000가 생산하는 항 효모물질은 일종의 단백질성 고분자 물질이란 점에서 기존 항 진균제와 차이가 있다. 이 항 효모물질은 유도기나 대수증식 기에 있는 효모 생육을 억제시켰으며, cell cycle 분석에서 sub-G1기에 속하는 세포수의 증가 없이 세포를 arrest시켰다. 따라서 항 효모물질은 Candida albicans에 정균작용을 나타내었다. 또한 in vitro 실험에서 이 항 효모물질과 itraconazole이나 fluconazole을 병용한 후 fractional inhibitory concentration index 분석을 행한 결과 항 효모활성이 더욱 상승되었다. 결론적으로 이 항 효모물질은 정균 작용을 가질 뿐만 아니라 azole계의 항 진균제와 혼용하면 상승효과를 가짐으로 부작용이 적은 새로운 개념의 항 진균제로 개발할 가치가 있을 것이라고 생각된다.

$\beta$-Glucosidase 처리된 참깨박 추출물의 항산화 및 상승효과 (Antioxidant and Synergistic Effect of Sesame Oil Cake Extract Treated from $\beta$-Glucosidase)

  • 손종연;강동우;신길만
    • 한국식품영양학회지
    • /
    • 제14권6호
    • /
    • pp.591-595
    • /
    • 2001
  • 참깨 탈지박에 다량존재하는 수용성 lignan화합물을 $\beta$-glucosidase로 처리하여 얻어진 참깨박 추출물의 항산화 효과 및 기존 항산화제들과의 상승효과를 비교, 검토하고자 하였다. 참깨박 추출물 중에서도 sesamin 및 sesamolin이 peak가 확인되었으며, 각각 8.32%(8,315.4mg/100g) 및 0.28%(2,824.5mg/100g)의 함량을 나타냈다. Sesamin과 sesamolin은 배당체의 aglycone으로서 탈지박 중에 존재하는 것으로 나타났다. 참깨박 추출물의 항산화효과는 첨가농도가 증가함에 따라 증가되었으며, 이들의 효과는 같은 농도(100ppm)의 $\alpha$-tocopherol이나 ascorbyl palmitate 첨가구보다 항산화효과가 우수하였으나 BHA보다는 다소 약한 효과를 보였다. 또한 가수분해 물은 $\alpha$-tocopherol과 강한 상승 작용을 보여주었으나 ascorbyl palmitate와는 비교적 약한 상승작용을 나타내었다.

  • PDF

Synergistic inhibition of mesothelioma cell growth by the combination of clofarabine and resveratrol involves Nrf2 downregulation

  • Lee, Yoon-Jin;Im, Jae-Hyuk;Lee, David M.;Park, Ji-Sung;Won, Seong Youn;Cho, Moon-Kyun;Nam, Hae-Seon;Lee, Yong-Jin;Lee, Sang-Han
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.647-652
    • /
    • 2012
  • We previously reported that MSTO-211H cells have a higher capacity to regulate Nrf2 activation in response to changes in the cellular redox environment. To further characterize its biological significance, the response of Nrf2, a transcription factor that regulates ARE-containing genes, on the synergistic cytotoxic effect of clofarabine and resveratrol was investigated in mesothelioma cells. The combination treatment showed a marked growth-inhibitory effect, which was accompanied by suppression of Nrf2 activation and decreased expression of heme oxygenase-1 (HO-1). While transient overexpression of Nrf2 conferred protection against the cytotoxicity caused by their combination, knockdown of Nrf2 expression using siRNA enhanced their cytotoxic effect. Pretreatment with Ly294002, a PI3K inhibitor, augmented the decrease in HO-1 level by their combination, whereas no obvious changes were observed in Nrf2 levels. Altogether, these results suggest that the synergistic cytotoxic effect of clofarabine and resveratrol was mediated, at least in part, through suppression of Nrf2 signaling.

Anti-MRSA action of Papenfussiella kuromo

  • Lee, Sun-Ae;Mun, Su-Hyun;Kang, Ok-Hwa;Joung, Dae-Ki;Seo, Yun-Soo;Kang, Da-Hye;Kim, Sung-Bae;Kong, Ryong;Yang, Da-Wun;Kwon, Dong-Yeul
    • Natural Product Sciences
    • /
    • 제20권1호
    • /
    • pp.39-43
    • /
    • 2014
  • Papenfussiella kuromo (PK) is a marine plant and an abundant ecological resource for the future; it is found in almost 80% of the terrestrial biosphere. The aim of this study was to investigate the antibacterial activity of PK against methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant pathogen. The minimum inhibitory concentrations (MICs) of PK hexane fraction (PKH) against 7 strains of MRSA ranged from 1.0 to 2.0 mg/mL. In the checkerboard dilution method, a synergistic effect of the PKH and the antibiotics (oxacillin and norfloxacin) was seen. PKH markedly reduced the MIC of each of the 4 antibiotics against MRSA. The time-kill assay showed that the synergistic activity of PKH and an antibiotic reduced the bacterial counts below the lowest detectable limit after 24 h. These findings suggest that PKH has antibacterial activity, and may be important baseline data in future extensive studies of living marine resources as a source of compounds active against MRSA.

Expression and Synergistic Effect of Bacillus thuringiensis CrylAc in Lepidopteran Toxic Strain to Plutella xylostella

  • Kang, Joong-Nam;Roh, Jong-Yul;Shin, Sang-Chul;Ko, Sang-Hyun;Chung, Yeong-Jin;Kim, Yang-Su;Wang, Yong;Choi, Hee-Kyu;Li, Ming-Shun;Choi, Jae-Young;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제14권1호
    • /
    • pp.33-36
    • /
    • 2007
  • To improve insecticidal activity of B. thuringiensis 2385-1 (Bt 2385-1), a recombinant plasmid, pHT1K-1Ac, was introduced into lepidopteran toxic Bt 2385-1 by electroporation. The presence of the recombinant plasmid in Bt 2385-1 after electroporation was confirmed by PCR. Bt 2385-1 transformant was named as Bt pHT1K-1Ac/2385-1 (1K-1Ac/2385-1). The 1K-1Ac/2385-1 transformant produced bipyramidal-shaped parasporal inclusion as like the wild-type strain, Bt 2385-1, and showed an 130 kDa band of Cry1Ac protein. The insecticidal activity of 1K-lAc/2385-1 against S. exigua was similar to that of Bt 2385-1 but the $LC_{50}$ value of transformant against P. xylostella was 1.8 times lower. Through these bioassay results, it was confirmed that toxicity of Bt 2385-1 transformant showed synergistic effect by introducing Cry1Ac. These results suggested that the multiple expressions of Cry proteins in a promising Bt strain may interact synergistically in insect midgut, resulting in increase of toxicity and expansion of host spectrum.