• Title/Summary/Keyword: Synchronous motors

Search Result 433, Processing Time 0.028 seconds

Performance Test of 1MW class High-temperature Superconducting Motor for Industry Application (1MW 급 산업용 고온초전도 모터 특성 평가)

  • Baik, S.K.;Kwon, Y.K.;Kim, J.M.;Lee, J.D.;Lee, E.Y.;Kim, Y.C.;Moon, T.S.;Park, H.J.;Kwon, W.S.;Park, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.142-143
    • /
    • 2007
  • A 1MW class HTS(High-Temperature Superconducting) synchronous motor has been developed. This motor is aimed to be utilized for industrial application such as large motors operating in large plants. The HTS field coil of the developed motor is cooled by way of Neon thermosiphon mechanism and the stator coil is cooled by water through hollow copper conductor. This paper describes performance test results of our motor, which was conducted at steady state in generator mode and motor mode.

  • PDF

A Mock Running And Transient State Test of Propulsion VVVF Inverter for Electric Locomotive using A Inertia Load (관성부하를 이용한 전동차 추진용 VVVF 인버터의 모의주행 및 과도상태시험)

  • 정만규;서광덕
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.491-499
    • /
    • 1999
  • This paper is on the high perfonnance propulsion IGBT VVVF inverter adopted new technique for railways. To prove the high performance and stabilit~r of traction, running tests are carried out under the simulated condition alike real field. The tests are perfonned on not only a steady states but also a transient states such a as input voltage variation using inertia load equivalent to 160tons train. The vector control technique is a adopted to improve traction for 4 motors. The low switching synchronous PW1\l method based on a space v voltage vector modulation is pro\XlSed as the optimal method for propulsion system railway. The output voltage l is controlled continuously to six step by prolxlsed ovennodu]ation technique without sudden torque variation.

  • PDF

Field Weakening Control of IPMSM Using Current Feedback (전류궤환에 의한 영구자석 동기 전동기의 약계자 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Jong-Koo;Choi, Weom-Beom;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.347-349
    • /
    • 1995
  • This paper describes current controlled PWM technique of IPM synchronous motors for a wide variety of speed control applications. They are however limited in their ability to operate in the power limited regime where the available torque is reduced as the speed is increased above its base value. This paper reviews the operation of the IPMSM drives when they are constrained to be within the permissible envelope of maximum inverter voltage and current to produce the rated power and to provide this with the highest attainable rotor speed. This paper proposes a new field-weakening control algorithm using phase current feedback to improve the torque characteristics and to reduce the torque ripple of IPMSM in the constant power region. The improved torque characteristics of speed control strategy with current feedback control algorithm is analyzed and the performance is investigated by the computer simulation results.

  • PDF

A Design Of Active Vibration Control System For Precise Maglev Stage (초정밀 자기부상 스테이지용 능동진동제어시스템 설계)

  • Lee, Joo-Hoon;Kim, Yong-Joo;Son, Sung-Wan;Lee, Hong-Ki;Lee, Se-Han;Choi, Young-Kiu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.121-124
    • /
    • 2004
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force fer suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system. the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used fer solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage table's vibrations, a digital controller with high precise signal converters, and electromagnetic actuators.

  • PDF

Improved Responsiveness of Model-Based Sensorless Control for Electric-Supercharger Motor using an Position Error Compensation (위치 오차 보상을 통한 전동식 슈퍼차저 모터의 모델 기반 센서리스 응답성 개선)

  • Park, Gui-Yeol;Hwang, Yo-Han;Heo, Nam;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Sensorless electric superchargers have recently been actively developed to provide a large amount of oxygen to engines in order assist the combustion process for miniaturizing the engines and improving fuel efficiency. The model-based sensorless method for surface-mounted permanent magnet synchronous motors has a disadvantage in that the system may become unstable due to parameter variations in low-speed operation and the rapid-acceleration section. An electric supercharger requires fast response to improve the engine response delay, such as the turbocharger turbo-rack. Therefore, the responsiveness must be improved to use the model-based sensorless system. The position compensation algorithm designed in this study is controlled by converting the position error into the beta, which is the angle formed by the d-axis and the stator current during sudden speed change. In this study, we improved the response of the model-based sensorless system through the algorithm and verified the algorithm validity by applying the algorithm to an actual dual-motor supercharger.

Hybrid PWM Modulation Technology Applied to Three-Level Topology-Based PMSMs

  • Chen, Yuanxi;Guo, Xinhua;Xue, Jiangyu;Chen, Yifeng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.146-157
    • /
    • 2019
  • The inverter is an essential part of permanent magnet synchronous motor (PMSM) drive systems. The performance of an inverter is greatly influenced by its modulation strategy. Using a proper management of modulation strategies can guarantee high performance from a PMSM under various speed conditions. Switching between modulations is a pivotal technique that determines the performance of a PMSM. Most works on hybrid methods focus on two-level induction motors drive systems. In this paper, in order to improve the performance of PMSMs under various speed conditions, a hybrid method of a pulse width modulation (PWM) control scheme based on a neutral-point-clamped (NPC) three level topology was proposed. This hybrid PWM modulation comprised space vector PWM (SVPWM) and selective harmonic elimination PWM (SHEPWM). Under low speed conditions, the SVPWM is employed to cause the PMSM to start smoothly, and to obtain a rapid response from the control system. Under high speed conditions, the SHEPWM is employed to reduce the switching frequency and to eliminate particular current harmonics. Moreover, the harmonic characteristics of different modulations are analyzed to obtain a smooth transition between the SHEPWM and the SVPWM. Experimental and simulation results indicated the effectiveness of the proposed control method.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

Analysis on Efficiency Characteristics of IPMSM for fuel Economy Improve of Electric Vehicle (전기자동차의 연비향상을 위한 매입형 영구자석 동기전동기의 효율특성 분석)

  • Kim, Jong-Hee;Kim, Ki-Chan;Lee, Dae-Dong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • Electric motors for electric vehicles differ in efficiency characteristics depending on the operation modes, studies for evaluating high efficiency characteristics in low speed and high speed operation modes are very important. Therefore, it is necessary to design method that can change the high torque, high output density, and high efficiency characteristics of driving motors for electric vehicles. In this paper, the diameter ratio of stator and rotor for the interior permanent magnet synchronous motor is change of designed 0.62, 0.65, and 0.68, respectively, and the efficiency characteristics of the entire operation section, average efficiency characteristics of the city driving modes and express highway driving modes are analyzed. As a result of analyzing the efficiency characteristics of the entire operating section, it was confirmed that as the diameter ratio increases, the high efficiency section moves to the low speed and low torque section and the high efficiency section moves to the high speed and low torque neighborhood as the diameter ratio decreases. As a result of analyzing the average efficiency characteristics in the city driving modes and express highway driving modes, the average efficiency of 0.68 model is analyzed to be more efficient than the 0.63 and 0.65 model ratio, and it is confirmed that it is suitable for city driving modes and express highway driving modes.

Transient analysis of marine propulsion motor and shaft under abnormal conditions (이상상태 발생 시 선박용 추진전동기 및 추진축의 과도상태 해석)

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Seung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.34-38
    • /
    • 2016
  • Recently, electric propulsion systems are been increasingly used in large cruise ships and merchant vessels. When abnormal electrical conditions occur in the motor of an electric propulsion ship, they can cause serious damage to the motor and propeller shaft. Research on abnormal conditions of propulsion motors used in electric propulsion vessels and electric ships difficult to find. In this study, a mathematical model of the electric propulsion system is proposed to analyze transient phenomena that occur in the case of electric propulsion motor or propeller shaft malfunction. A synchronous motor was used in the MATLAB computer simulation of this study. In the event of electrical malfunction of the electric propulsion motor at rated operation, over current occurs in the condition of 1 phase ground, over torque occurs at 3 and 2 phases ground and over current and torque occur when exciting power fails at rated operation.

The Analysis of Skewed Armature Effect for Reduction of End Edge Cogging Force of Stationary Discontinuous Armature PMLSM (전기자 분산배치 PMLSM의 단부 코깅력 저감을 위한 전기자 스큐각의 영향 분석)

  • Kim, Yong-Jae;Kim, Jae-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.243-248
    • /
    • 2014
  • The permanent magnet linear synchronous motors facilitate maintenance, for it is structurally simple compare to rotating machine and has lots of advantage such as a precision control, high speed, high thrust and so on. However, it causes an increase of material cost because of structural characteristics that need to arranges the armature on the full length of transportation lines. Thus, in order to resolve this problem, we propose the discontinuous arrangement method of the armature but the edge always exists due to the structure when the armature is arranged discontinuously. Due to this edge, the cogging force is greatly generated and it causes thrust force ripple generating noise, vibration and decline of performance. Therefore, in this paper, we examined the characteristic of end edge according to the skew angle through 3-D numerical analysis using finite element method(FEM) and improved the operation characteristics.