• Title/Summary/Keyword: Synchronous generators

Search Result 137, Processing Time 0.023 seconds

Gird Connected Modeling of Primary Frequency Recovery Reserve Provided by Electric Vehicle Considering Characteristics of Electric Vehicle Charge/Discharge Control Integrated Environment (전기자동차 충·방전제어 통합 환경을 고려한 전기차 1차 주파수 회복예비력의 계통연계형 모델링)

  • Kook, Kyung Soo;Lee, Jihoon;Moon, Jonghee;Choi, Wooyeong;Park, Kijun;Jang, Dongsik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.249-254
    • /
    • 2021
  • As the spreading speed of electric vehicles increases rapidly, those are expected to be able to use them as flexible resources in the power system beyond the concern for the supply of its charging power. Especially when the Renewable Energy sources (RES) which have no intrinsic control capability have replaced the synchronous generators more and more, the power system needs to secure the additional frequency control resources to ensure its stability. However, the feasibility of using electric vehicles as the frequency control resources should be analyzed from the perspective of the power system operation and it requires the existing simulation frameworks for the power system. Therefore, this paper proposes the grid connected modeling of the primary frequency control provided by electric vehicles which can be integrated into the existing power system model. In addition, the proposed model is implemented considering technical performances constrained by the characteristics of the Vehicle-Grid Integration (VGI) system so that the simulation results can be accepted by the power utilities operating the power system conservatively.

Field Loss Analysis and Cooling Analysis of HTS Synchronous Motor (고온초전도 동기모터의 계자손실 해석 및 냉각 해석)

  • Kim, Ki-Chan;Lee, Dae-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.69-74
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

Simulations of the Dynamic Load in a Francis Runner based on measurements of Grid Frequency Variations

  • Ellingsen, Rakel;Storli, Pal-Tore
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.102-112
    • /
    • 2015
  • In the Nordic grid, a trend observed the recent years is the increase in grid frequency variations, which means the frequency is outside the normal range (49.9-50.1 Hz) more often. Variations in the grid frequency leads to changes in the speed of rotation of all the turbines connected to the grid, since the speed of rotation is closely related to the grid frequency for synchronous generators. When the speed of rotation changes, this implies that the net torque acting on the rotating masses are changed, and the material of the turbine runners must withstand these changes in torque. Frequency variations thus leads to torque oscillations in the turbine, which become dynamical loads that the runner must be able to withstand. Several new Francis runners have recently experienced cracks in the runner blades due to fatigue, obviously due to the runner design not taking into account the actual loads on the runner. In this paper, the torque oscillations and dynamic loads due to the variations in grid frequency are simulated in a 1D MATLAB program, and measured grid frequency is used as input to the simulation program. The maximum increase and decrease in the grid frequency over a 440 seconds interval have been investigated, in addition to an extreme event where the frequency decreased far below the normal range within a few seconds. The dynamic loading originating from grid frequency variations is qualitatively found by a constructed variable $T_{stress}$, and for the simulations presented here the variations in $T_{stress}$ are found to be around 3 % of the mean value, which is a relatively small dynamic load. The important thing to remember is that these dynamic loads come in addition to all other dynamic loads, like rotor-stator interaction and draft tube surges, and should be included in the design process, if not found to be negligible.

An Optimal Design Method of a Linear Generator for Conversion of Wave Energy (파력에너지 변환을 위한 선형발전기의 최적 설계 방법)

  • Kim, Jung-Yoon;Kim, Byung Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1195-1204
    • /
    • 2021
  • In this paper, we present an optimal design method for wave power generators using the response surface analysis. Especially, in our method, we reduce the mechanical loss by selecting the linear generator whose linear movement can be converted to the electrical energy directly with the vertical movement of waves. Therefore, we calculate the exciting force acting on the drive device in a slow-wave condition and determine the winding process with a ratio of the slots and poles for the improvement of energy conversion efficiency. In addition, we employ the regression analysis for deriving the shape factors of the stator and the translator, which have a significant effect on the performance of a generator. We choose the best design variables through the response surface analysis, and then we study the optimization method for designing the efficient experiment using the analysis results. Finally, we show the validity of the proposed method through the simulation results.

Dual Fuel Generator Modeling and Simulation for Development of PMS HILS (PMS HILS 구축을 위한 Dual Fuel Generator 모델링 및 시뮬레이션)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Lee, Kwang-Kook;Song, Jee-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.613-619
    • /
    • 2017
  • In this paper, DF(Dual Fuel) Generator modeling, which uses both conventional diesel fuel and LNG fuel, has been performed and monitoring system has been developed based on MATLAB/SIMULINK for the development of PMS(Power Management System) HILS(Hardware In the Loop Simulation). The principal components modeling of DF Generator are DF engine which provides the mechanical power and synchronous generator which convert the mechanical power into electrical power. Submodels, such as throttle body, intake manifold, torque generation and mass of LNG and diesel Quantity are used to perform DF engine. Also, governor is used for load sharing between paralleled DF generators to share a total load that exceeds the capacity of a single generator. To verify modeling of DF Generator designated ship lumped load Simulation is carried out. A validity of DF Generator has been verified by comparison between simulation results and estimated result from the designated lumped load.

Developing an improved water discharge anchor & trap bolt to prevent basic salt penetration to harbor structures (해수 염기 침투방지를 위한 성능개선 형 물배출 앵커 및 트랩볼트 개발에 관한 연구)

  • Ock, Jong-Ho;Moon, Sang-Deok;Lee, Hwa-Sun;Shin, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.674-682
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

Design of High Efficiency Permanent Magnet Synchronous Generator for Application of Waste Heat Generation ORC System (폐열발전 ORC 시스템 적용을 위한 고효율 영구자석형 동기발전기 설계)

  • Yeong-Jung Kim;Seung-Jin Yang;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • The power generation method using expensive diesel has operation problems such as high cost diesel generator and a lack of reserved power due to increase of power demand in some islands, requiring expansion of power generation facilities. To solve this problems, it is necessary to improve the efficiency of power generation facilities through an ORC(Organic Rankin Cycle) system application that uses waste heat as a heat source. Therefore, localized application technology of price competitive and highly reliable ORC power generation system is needed, and optimization technology of generators is having great effect, so this study performed two generator designs to get a high-efficiency generator with an optimized 30kW output. The comparison of simulation data for two designed models showed that a generator with SPM factor of 46.2% had an efficiency of 92.1% and a power ouput of about 23.2kW based on 12,000rpm, a generator with SPM factor of 44.46%, had a power output of 27.9kW and efficiency of 93.6% based on above rpm. For the verification of improved design model with SPM factor of 44.46%, the prototype test system with 110kW motor dynamometer was installed and got to the efficiency of 92.08% with conditions of the rated capacity 25kW at 12,000rpm, the test results of prototype generator showed the validity of generator design.