• Title/Summary/Keyword: Synchronous generator design

Search Result 170, Processing Time 0.046 seconds

The Performance Improvement of Synchronous Machine with Digital Excitation System Control

  • Hong, H.M.;Choi, J.H.;Jeon, B.S.;Min, M.K.;Kim, J.G.;Lim, I.H.;Ryu, H.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.498-501
    • /
    • 2005
  • This paper deals with the design and evaluation of the robust controller for a synchronous generator excitation system to improve the steady state and transient stability. The nonlinear characteristics of the system is treated as model uncertainties, and then the robust control techniques are introduced into the power system stability design to take into account these uncertainties at the controller design stage. The performance of the designed controller is examined by extensive non-linear time domain simulation. It is shown that the performance of the robust controller is superior to that of the conventional PI controller. This paper also proposes an improved digital exciter control system for a synchronized generator using a digitally designed controller with database. Results show that the proposed control system manifests excellent control performance compared to existing control systems. It has also been confirmed that it is easy for the proposed control system to implement digital control.

  • PDF

Development of Inter-Turn Short Circuits Sensor for Field Winding of Synchronous Generator

  • Nam J-H;Jeon Y-S;Choe G-H;Lee S-H;Jeong S-Y;Yoo B-Y;Ju Y-H;Lee Y-J;Shin W-S
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.56-59
    • /
    • 2001
  • An effective method of detecting inter-turn short circuits on round rotor windings is described. Shorted-turns can have significant effects on a generator and its performance. A method of detecting inter-turn short circuits on rotor windings is described. The approach used is to measure the rate of change of the air-gap flux density wave when the rotor is at operating speed and excitation is applied to the field winding. The inter-turn short circuits sensor for synchronous generator's field winding has been developed. The sensor, installed in the generator air-gap, senses the slot leakage flux of field winding and produces a voltage waveform proportional to the rate of change of the flux. For identification of reliability for sensor, a inter-turn short circuits test was performed at the West-Inchon combined cycle power plant on gas turbine generator and steam turbine generator. This sensor will be used as a detecting of shorted-turn for field winding of synchronous generator. The purpose of this paper is to describe the design and operation of a sensitive inter-turn short circuits detector. In this paper, development of inter-turn short circuits sensor for field winding of synchronous generator and application in a field.

  • PDF

Design of Slot Wedge Shape for Reducing Cogging Torque in Outer Rotor Type Permanent Magnet Synchronous Generator with Open Slot Structure (개방형 슬롯 구조를 갖는 외전형 영구자석 동기발전기의 코깅 토크 저감을 위한 슬롯 ��지 형상 설계)

  • Kim, Bong-Ju;Park, Su-Kang;Moon, Jae-Won;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.936-938
    • /
    • 2011
  • This paper suggests the slot wedge shape for reducing the cogging torque of a gearless type direct-drive permanent magnet synchronous generator with open slot shape. To achieve this, we are designed the appropriate specifications of the permanent magnet synchronous generator by selected the appropriate material of slot wedge and various slot wedge shapes. The PMSG models were analyzed by finite element method. Finally, we have suggested appropriate material of slot wedges and its shape which has benefit to further reducing cogging torque and preventing decreasing of the generating power.

  • PDF

Adaptive Controller Design for a Synchronous Generator with Unknown Perturbation in Mechanical Power

  • Jiao Xiaohong;Sun Yuanzhang;Shen Tielong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.308-314
    • /
    • 2005
  • Transient stabilization with voltage regulation is investigated for a synchronous generator when the mechanical power is perturbed to any unknown value within its physical bounds so that the operating point of the system shifts to an unknown point. An adaptive excitation controller is designed based on the backstepping method with tuning functions. It will be shown that the adaptive control law proposed can achieve the convergence of the system states to the new equilibrium point in correspondence with the real value of the unknown mechanical power and the regulation of the terminal voltage to the required value. Simulation results are given to demonstrate the effectiveness of the proposed controller for the transient stabilization and voltage regulation.

Adaptive Sliding Mode Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System (가변속 풍력 발전용 영구자석형 동기발전기의 적응 슬라이딩 모드 제어기 설계)

  • Kim, Seong-Soo;Choi, Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.315-319
    • /
    • 2016
  • This paper proposes a simple adaptive sliding mode control algorithm for controlling a permanent magnet synchronous generator (PMSG) of a MW-class direct-driven wind turbine system. The proposed adaptive sliding mode controller does not require accurate knowledge of the PMSG parameter or turbine torque values. The proposed controller can accurately track the reference angular speed computed by the maximum power point tracking(MPPT) algorithm. Finally, this paper gives Matlab/Simulink simulation results to verify the practicality and effectiveness of the proposed adaptive sliding mode controller.

Design of Preventing Deviation System of Magnet for high Speed Rotated Surface Mounted Permanent Magnet Synchronous Generator (고속으로 회전하는 표면부착형 영구자석 동기발전기의 마그넷 이탈방지 시스템 설계)

  • Kim, Youngmin;Kim, Jungsu;Park, Sunho;Lim, Minsoo;Bang, Johyug;Ryu, Jiyune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 2014
  • Surface Permanent-Magnetic-Synchronous-Generator (SPMSG) discussed in the present study has operational characteristics such as high rotational speed over 1,000 rpm and centrifugal force of 12 kN·m for each magnet. Structure-development analysis for the minimization of rotor-core weights and the maximization of thermal emission is performed by applying the aluminum-laminated cap which combines the advantages of IPM and SPM in order to overcome the difficulty that attaching the magnet to rotor-core only with an adhesive. In this study, the simulations in terms of structure and electromagnetic were performed with the variable parameters such as shape and thickness of laminated-cap and division method of magnet. As a result, condition for minimized centrifugal force with minimum loss is derived.

Characteristic analysis and experiment of axial flux type permanent magnet synchronous generator for small wind turbine (소형풍력발전 시스템용 축방향 자속형 영구자석 동기발전기의 특성해석과 실험)

  • You, Yong-Min;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.704_705
    • /
    • 2009
  • This paper presents a axial flux permanent magnet synchronous generator(AFPMSG), which is suitable for both vertical-axis and horizontal-axis wind turbine generation system. The design and construction features of the AFPMSG are reviewed. The characteristic analysis is performed such as cogging torque and e.m.f waveform, with the aid of a 3D finite element method. The experimental results confirm the characteristic analysis developed.

  • PDF

PSS-AVR Design using Feedback Linearization (Feedback Linearization을 이용한 PSS-AVR 설계)

  • 염동희;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.202-202
    • /
    • 2000
  • In this paper, the synchronous generator model which is derived from the swing equation and the Park's equation is transformed to an adequate form for feedback linearization. And the single controller is designed in order to play the role of both PSS and AVR. The result of the simulations shows that the stability of the system is guaranteed in the wide range of operating points.

SDRE Based Near Optimal Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System (가변속 풍력 발전용 영구자석형 동기발전기의 SDRE 기반 준최적 비선형 제어기 설계)

  • Park, Hyung-Moo;Choi, Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2015
  • In this paper, we propose a near optimal controller design method for permanent magnet synchronous generators (PMSGs) of MW-class direct-driven wind turbine systems based on SDRE (State Dependent Riccati Equation) approach. Using the solution matrix of an SDRE, we parameterize the optimal controller gain. We present a simple algorithm to compute the near optimal controller gain. The proposed optimal controller can enable PMSGs to precisely track the reference speed determined by the MPPT algorithm. Finally, numerical simulation results are given to verify the effectiveness of the proposed optimal controller.

Voltage Controller Design of Synchronous Generator by Pole Assignment (극배치에 의한 동기발전기의 전압제어기 설계)

  • Yim, Han-Suck
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.12
    • /
    • pp.472-484
    • /
    • 1985
  • A design of robust voltage controller for high speed excitation of synchronous machine was carried out by pole assignment techniques. An affine map from characteristic polynomial coefficients to feedback parameters is formulated in order to place the system eigen values in the desired region. The feedback parameters determined from linearized model are tested on nonlinear model subjecting it to small disturbances and system faults to show the effectiveness of the controller designed by the proposed technique. The results obtained indicate that the controller presented improves the dynamic stability and system performances of conventionally controlled synchronous machine significantly.

  • PDF