• 제목/요약/키워드: Synchronous error

검색결과 344건 처리시간 0.022초

Rigid 탭핑에서의 Z축과 주축간 동기오차의 거동 (Action of Synchronous error between Z axis and spindle axis on rigid tapping)

  • 이돈진;강지웅;김용규;김선호;김화영;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.184-187
    • /
    • 2000
  • This paper describes action of synchronous error between z axis and spindle axis on rigid tapping. Because rigid tapping cuts the threads synchronizing the movement of z axis to spindle rotation, synchronous error between z axis and spindle is very important. Increase of synchronous error degrades the accuracy of thread and crushes the tap in worst case. So we developed the realtime measurement system of synchronous error in order to know the action of synchronous error on rigid tapping. In result, we have known that synchronous error was increased according to rise of spindle speed and z axis speed. And because the cutting torque(M3-30Ncm∼M10-300Ncm) on rigid tapping are less than maximum motor torque(3500Ncm), it specially doesn't affect the synchronous error. The most important parameter which has affected the increase of synchronous error was acceleration/deceleration time. On worst case, spindle motor was tripped because of the excess of synchronous error. Because the acceleration/deceleration time ocuupies the most of the total cutting time, in order to move on the high speed rigid tapping, the acceleration/deceleration time of spindle must be remarkably reduced.

  • PDF

비대칭외란을 고려한 2축 전동실린더의 동기제어에 관한 연구 (A Study on the Synchronous Control of Two Motor Cylinders with Skew Disturbance)

  • 변정환
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.129-136
    • /
    • 2009
  • A motor cylinder is widely used as an apparatus for transportation of a small scale load. It is, however, difficult for only one motor cylinder to transfer a large scale load such as a weir. The large scale load is transferred by two motor cylinders which are mounted on right and left of load itself. In this case, the displacement difference generated between two motor cylinders, namely, the synchronous error has a bad influence on the transportation. In this study, a synchronous control system is designed to restrain synchronous error caused by skew disturbance. The control system is composed of two disturbance observers and one synchronous controller. Each disturbance observer is designed to restrain the skew disturbance. And the synchronous controller is designed to achieve stable and accurate synchronization. Finally, the simulation results show that the designed control system is effective for the skew disturbance which lead to synchronous error.

  • PDF

외란 관측기와 PID제어기를 이용한 2축 주행시스템의 동기제어 (Synchronous Control of a Two-Axes Driving System by Disturbance Observer and PID Controller)

  • 변정환;김영복;양주호
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.67-72
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers, disturbance observers, and one synchronous controller. The speed controllers, based on the PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order for the speed response fo the second axis to correspond with the one of the first axis. The disturbance observer has been designed to restrain the torque disturbance. The synchronous controller eliminates the synchronous error by controlling the speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

Optimization of PI Controller Gain for Simplified Vector Control on PMSM Using Genetic Algorithm

  • Jeong, Seok-Kwon;Wibowo, Wahyu Kunto
    • 동력기계공학회지
    • /
    • 제17권5호
    • /
    • pp.86-93
    • /
    • 2013
  • This paper proposes the used of genetic algorithm for optimizing PI controller and describes the dynamic modeling simulation for the permanent magnet synchronous motor driven by simplified vector control with the aid of MATLAB-Simulink environment. Furthermore, three kinds of error criterion minimization, integral absolute error, integral square error, and integral time absolute error, are used as objective function in the genetic algorithm. The modeling procedures and simulation results are described and presented in this paper. Computer simulation results indicate that the genetic algorithm was able to optimize the PI controller and gives good control performance of the system. Moreover, simplified vector control on permanent magnet synchronous motor does not need to regulate the direct axis component current. This makes simplified vector control of the permanent magnet synchronous motor very useful for some special applications that need simple control structure and low cost performance.

H$\infty$ 제어기법을 이용한 2축 구동 시스템의 위치동기제어 (Position Synchronous Control of a Two-Axes Driving System by H$\infty$ Approch)

  • 변정환;여동준
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.192-198
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers and one synchronous controller. The speed controllers based on PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order that speed response of the second axis corresponds with one of first axis. Especially, considering to model uncertainties of each axis, the synchronous controller has been designed using H$\infty$ control theory. The controller eliminates the synchronous error by controlling speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

확장성과 안정성을 고려한 동기제어계의 구축에 관한 연구 (A Study on Construction of Synchronous Control System for Extension and Stability)

  • 변정환;김영복
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1135-1142
    • /
    • 2002
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a multi-axes driving system has been developed. The synchronous error is caused by model uncertainties and disturbance at each axis. To overcome these problems, the synchronous control system of each axis has been composed of reference model, speed and synchronous controllers. The speed control system has been designed to follow speed reference. And the synchronous controller has been designed to keep minimizing the position synchronous error by reference model and H$\sub$ / approach. By the proposed method, position synchronous control system can be easily extended to two or more axes driving system. The effectiveness of the proposed method has been demonstrated by experiment.

소형 선박용 듀얼 전기추진시스템의 동기제어시스템 설계 (The Synchronous Control System Design of a Dual Electric Propulsion System for Small Boats)

  • 변정환
    • 한국전자통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.85-92
    • /
    • 2017
  • 최근, 전기추진시스템은 무인선, 어군탐지선 등에 활용되고 있다. 이 추진시스템 중에는 추진력 향상을 위해 두 대의 전기모터와 프로펠러로 구성된 경우가 있다. 이때 두 프로펠러 간의 속도 차에 해당하는 동기오차는 에너지효율과 침로오차에 영향을 미친다. 본 연구에서는 외란과 동특성 불일치에 의해 발생되는 동기오차를 억제하기 위한 동기제어시스템이 설계된다. 이 제어시스템은 기준모델, 예비필터와 속도제어기, 동기제어기로 구성된다. 기준모델은 추진시스템마다 상호 분리된 동기오차와 제어입력의 계산에 이용된다. 예비필터와 속도제어기는 추진시스템이 오버슈트와 입력포화 없이 지령을 추종하도록 설계된다. 그리고 동기제어기는 안정적이고 신속한 동기화의 관점에서 근궤적법으로 설계된다. 끝으로, 시뮬레이션을 통해 설계된 제어시스템이 외란에 효과적임을 보여준다.

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim Kyeong-Hwa;Youn Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.174-178
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet (PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator, the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF, resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim, Kyeong-Hwa;Young, Myung-Joong
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.88-98
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet(PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF., resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

가속도제어에 의한 4축 시스템의 정밀 위치동기제어 (Precise Position Synchronous Control of Four-Axes System Based on Acceleration Control)

  • 정석권;최봉석;유삼상
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1245-1254
    • /
    • 2004
  • In this paper, we deal with a precise position synchronous control of four-axes system which is working under various load disturbances. Each axis driving system is consisted of a speed controller and an acceleration controller as an inner loop instead of conventional current control scheme. The acceleration control plays an important roll to suppress load disturbances quickly. Also, each axis is coupled by a maximum position synchronous error comparison to minimize position synchronous errors according to integration of speed differency. As a result, the proposed system enables precise synchronous control with good robustness against load disturbances during transient as well as steady state. The stability and robustness of the proposed system are investigated through its frequency characteristic and numerical simulations. Finally, experimental results under load disturbances demonstrate the effectiveness of the proposed control system fur four-axes position synchronous control.