• 제목/요약/키워드: Synchronous d-axis rotor current

검색결과 28건 처리시간 0.021초

Analysis and Compensation of Current Measurement Errors in a Doubly Fed Induction Generator

  • Son, Yung-Deug;Im, Won-Sang;Park, Han-Seok;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.532-540
    • /
    • 2014
  • It is necessary to measure the current of rotor for controlling the active and reactive power generated by the stator side of the doubly fed induction generator (DFIG) system. There are offset and scaling errors in the current measurement. The offset and scaling errors cause one and two times current ripples of slip frequency in the synchronous reference frame of vector control, respectively. This paper proposes a compensation method to reduce their ripples. The stator current is variable according to the wind force but the rotor current is almost constant. Therefore input of the rotor current is more useful for a compensation method. The proposed method adopts the synchronous d-axis current of the rotor as the input signal for compensation. The ripples of the measurement errors can be calculated by integrating the synchronous d-axis stator current. The calculated errors are added to the reference current of rotor as input of the current regulator, then the ripples are reduced. Experimental results show the effectiveness of the proposed method.

Sensorless Control of Non-salient Permanent Magnet Synchronous Motor Drives using Rotor Position Tracking PI Controller

  • Lee Jong-Kun;Seok Jul-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.189-195
    • /
    • 2005
  • This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.

Sensorless Control of IPMSM with a Simplified High-Frequency Square Wave Injection Method

  • Alaei, Ahmadreza;Lee, Dong-Hee;Ahn, Jin-Woo;Saghaeian Nejad, Sayed Morteza
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1515-1527
    • /
    • 2018
  • This paper presents a sensorless speed control of IPMSM (Interior Permanent Magnet Synchronous Motor) using the high-frequency (HF) square wave injection method. In the proposed HF pulsating square wave injection method, injection voltage is applied into the estimated d-axis of rotor and high-frequency induced q-axis current is considered to estimate the rotor position. Conventional square wave injection methods may need complex demodulation process to find rotor position, while in the proposed method, an easy demodulation process based on the rising-falling edge of the injected voltage and carrier induced q-axis current is implemented, which needs less processing time and improves control bandwidth. Unlike some saliency-based sensorless methods, the proposed method uses maximum torque per ampere (MTPA) strategy, instead of zero d-axis command current strategy, to improve control performance. Furthermore, this paper directly uses resultant d-axis current to detect the magnet polarity and eliminates the need to add an extra pulse injection for magnet polarity detection. As experimental results show, the proposed method can quickly find initial rotor position and MTPA strategy helps to improve the control performance. The effectiveness of the proposed method and all theoretical concepts are verified by mathematical equations, simulation, and experimental tests.

영구자석 표면부착형 동기전동기의 전류제어기를 이용한 센서리스 기동방법 및 속도제어 (Sensorless Speed Control and Starting Algorithm using Current Control of SPM Synchronous Motor)

  • 백인철;이주석;김학원
    • 전력전자학회논문지
    • /
    • 제18권6호
    • /
    • pp.523-529
    • /
    • 2013
  • A sensorless speed control of a permanent magnet synchronous motor(PMSM) which utilizes MRAS based scheme to estimate rotor speed and position is presented. Considering an error between real and estimated rotor position values, a state equation of PMSM in the synchronous d-q reference frame is represented. A state equation of model system which uses estimated speed and nominal parameter values is expressed. To minimize the errors between the derivatives of d-q axis currents of real and model system, MRAS based adaptation mechanisms for the estimation of rotor speed and position are derived. On the other hand, for the acceleration stage of motor just before the sensorless operation, an acceleration scheme using only d-axis current control is proposed. To show the validity of the proposed scheme, experimental works are carried out and evaluated. During acceleration stage, the acceleration scheme using only d-axis current command shows good acceleration performance and controlled current level. For the sensorless operation, at low speed (5% of rated speed), a good performance is observed.

권선계자형 동기전동기의 d축 쇄교자속에 의한 계자전류리플 보상 기법 개발 (Development of Field Current ripple Compensating Method by d-axis Flux-linkage in WRSM)

  • 황대연;구본관
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1165-1173
    • /
    • 2018
  • Recently, owing to environmental problems and instability of rare earth resources market, non-rare earth electric motors are attracting attention. As a non-rare earth motor type, a wound rotor synchronous motor(WRSM) has high power density and wide driving range further it can reduce loss by field current control during field weakening control at high speed. However, since the d-axis flux of the WRSM is coupled with the rotor circuit, the fluctuation in the d-axis flux linkage affects the rotor circuit, which causes ripple of the field current and torque. In this paper, we propose the field current ripple compensation method by injecting the feedforward voltage. the proposed compensating method was demonstrated by simulation and experiments.

계자전류 조합에 따른 ISG용 권선형 동기전동기의 설계 및 특성분석 (Design and Characteristic Analysis of Wound Rotor Synchronous Motor for ISG according to Field Current Combination)

  • 권성준;이동수;정상용
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1228-1233
    • /
    • 2013
  • In this paper, design of Wound Rotor Synchronous Motor(WRSM) for Integrated Starter and Generator(ISG) is performed based on Finite Element Analysis(FEA). WRSM can control not only magnitude and phase of armature current, but also field current. Thus, various control methods can be considered. Since driving characteristic of WRSM depends greatly on the control method, characteristic analysis accoding to possible driving current combination is reguired. Especially in high speed region, the control method that reduces unnecessary d-axis current by reducing field current is possible, which is similar to field weakening control. By the current combination reducing field and d-axis current, the design minimizing copper loss to increase efficiency on identical driving point is possible. In this paper, high efficient WRSM is designed applying the current combination which can minimize copper loss on each driving point.

자속축 전류제어기 출력전압를 이용한 PMSM 센서리스 제어 (Senseless Control of PMSM using Current Regulator Output Voltage in the Synchronous D-axis)

  • 이종건;석줄기;이동춘
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.147-149
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor(PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system which has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, the PI gains of rotor position tracking controller have a variable structure. The PI tuning formulas are derived by analyzing this control system using the frequency domain specifications such as phase margin and bandwidth assignment.

  • PDF

회전자 위치 추정 PI 제어기를 이용한 비돌극형 PMSM 센서리스 제어 (Sensorless Control of Non-salient PMSM using Rotor Position Tracking PI Controller)

  • 이종건;석줄기;이동춘;김흥근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권11호
    • /
    • pp.664-670
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor (PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system that has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, PI controller gains of rotor position tracking controller have a variable structure according to the estimated rotor velocity. In order to boost the bandwidth of PI controller around zero speed, a loop recovery technique is applied to the control system. The proposed method only requires the flux linkage of permanent magnet and is insensitive to the parameter estimation error and variation. The designers can easily determine the possible operating range with a desired bandwidth and perform the vector control even at low speeds. The experimental results show the satisfactory operation of the proposed sensorless algorithm under rated load conditions.

고정자 전류와 자속의 오차를 이용한 벡터제어 유도전동기의 회전자 시정수 보상 (Rotor Time Constant Compensation of Vector Controlled Induction Motor Using Stator Current and Flux Error)

  • 김우현;박철우;임성운;권우현
    • 제어로봇시스템학회논문지
    • /
    • 제6권5호
    • /
    • pp.367-375
    • /
    • 2000
  • It is proposed that the rotor time constant and inductance are compensated at the same time in the indirect vector control method of an induction motor. The proposed scheme compensates the rotor time constant using the difference between the Q-axis real stator current and estimated current that is calculated from the terminal voltage and current, and compensates inductance by using the difference between the D-axis real stator flux and estimated stator flux in the synchronous rotating reference frame. Although the rotor time constant and inductance vary at once, the proposed method compensates the rotor time constant and inductance with accuracy. In addition to, two variables can be compensated not only at the steady state condition, but also at the transient state, where the torque varies in a rectangular pulse waveform. Therefore, the performance of vector control is greatly improved as verified by experiment.

  • PDF

위상보상기를 가진 인버터로 구동되는 영구자석형 동기전동기의 제어기 설계 (The Controller Design of the Permanent Magnet Synchronous Drive Using a Inverter with Phase Compensator)

  • 유정웅;우광준
    • 대한전기학회논문지
    • /
    • 제37권3호
    • /
    • pp.146-154
    • /
    • 1988
  • The computer simulation of speed and phase control system has been carried out in this study. The load of permanent magnet type synchronous motor is not constant in this system. The cost function method has been used in obtaining the optimal gain of PI controller and the rotor position angle of phase controller has been compensated depending on the load and speed variation. This analysis also shows that the current of d-axis component is zero under the variable a load conditions and the torque per unit current can be maximized.

  • PDF