• Title/Summary/Keyword: Synchronous condenser

Search Result 20, Processing Time 0.023 seconds

Analysis of Impact on Voltage Stability by Starting Synchronous Condenser in Jeju AC Network (제주계통에서 동기조상기 기동에 따른 전압안정도 영향 검토)

  • Choi, Soon-Ho;Lee, Seong-Doo;Kim, Chan-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • Two old synchronous condensers in Jeju are being replaced by new machines to operate Jeju AC network with Haenam-Jeju HVDC system stably. Before new synchronous condensers operate on site, voltage stability analysis is conducted to verify stable operation of jeju AC network. Through impedance analysis of the synchronous machine, transformer and ac network, the equivalent circuit is constructed and the voltage drop during start-up is calculated. Then, PSS/E fault analysis is performed to acquire short-circuit capacity according to the generator operation scenarios. Voltage variation when starting synchronous condenser is simulated in PSCAD/EMTDC and satisfies the operating condition of jeju AC network and HVDC #1 system.

The Affections of System Stability on Replacing the Synchronous Condenser in Jeju Island (제주 동기조상기 교체에 따른 계통안정성 영향 연구)

  • Chang, Byung-Hoon;Yoon, Jong-Su;Han, Jeong-Yeol;Shim, Jeong-Woon;Kang, Sang-Gyun;Lee, Byong-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1715-1720
    • /
    • 2007
  • The CSC-based HVDC system links the Jeju system to the mainland system. Because CSC-based HVDC is installed in Jeju, the reactive power is needed to transfer active power through the HVDC. In order to supply reactive power, switched capacitors and synchronous condensers are installed in Jeju system. The deterioration of established synchronous condensers, however, causes a reactive power supply capability decline and high maintenance cost. It brings about the instability of Jeju system and the incremental of maintenance and repair costs. In the future the installation of wind generators and additional HVDC system would aggravate the stability of Jeju system. Therefore, it needs to consider a countermeasure against above problems. In this paper, Analysis of several contingencies of Jeju system was peformed, and some contingencies caused voltage-reactive power problem was known. CPF method was introduced in order to make countermeasures to replace the synchronous condensers and to solve the voltage-reactive power problem. The location and capacity of reactive power sources were also decided. It could guarantee medium and long term stability of Jeju system.

The study of self excited type brushless charging generator, it has generated region (발전영역을 갖은 자동형 brushless 충전발전기에 관한 연구)

  • Byung In Oh
    • 전기의세계
    • /
    • v.18 no.4
    • /
    • pp.7-15
    • /
    • 1969
  • In this method the condenser excite winding has the phase angle of 90 electrical degree, with the load winding in stator. The condenser excite wing is connected with the condenser while the load winding is with the full rectifer. Direct and quardrature axis components of rotating field winding are composed, of balanced two phase winding, and each one of them is connected with half wave rectifiers. Initically, small amount of lead current can be induced at the condenser excite winding by residual magnetism of rotor. The induced lead current forces the rotating field winding to be excited by synchronous alternating magnetic field. The speed electromotive force, there for, induced in rotating field winding shall electro magnetize the rotating field pole by rotating half wave rectifiers. In the case of the charging generator directly coupled with engines at the operation of wide range speed, the generated region, such as vehicles, aircraft, ships etc, is occured. In conclusion, we can take the advantage of, omitting of voltage regurator and current limiter for charging load and reducing the consumption of fuel using the generated region which can be devided in to Impossible generated region, Generated region, and suspension generated region.

  • PDF

Design of Robust Current Controller Using GA for Three Level 24-Pulse VSC Based STATCOM

  • Janaki, M.;Thirumalaivasan, R.;Prabhu, Nagesh
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.375-380
    • /
    • 2011
  • A STATic synchronous COMpensator (STATCOM) is a shunt connected voltage source converter (VSC) based FACTS controller using Gate Turn Off (GTO) power semiconductor devices employed for reactive power control. The operation principal is similar to that of a synchronous condenser. A typical application of a STATCOM is voltage regulation at the midpoint of a long transmission line for the enhancement of power transfer capability and/or reactive power control at the load centre. This paper presents the modeling of STATCOM with twenty four pulse three level VSC and Type-1 controller to regulate the reactive current or the bus voltage. The performance is evaluated by transient simulation. It is observed that, the STATCOM shows excellent transient response to step change in the reactive current reference. While the eigenvalue analysis is based on D-Q model, the transient simulation is based on both D-Q and 3 phase models of STATCOM (which considers switching action of VSC).

Feasibility Analysis of STATCOM Application for Jeiu-Haenam HVDC System (제주-해남 HVDC 시스템에 STASTCOM 적용 타당성 분석)

  • Baek Seung-Taek;Choo Won-Gvo;Han Byung-Moon;Jang Gil-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.401-409
    • /
    • 2005
  • This paper describes a feasibility analysis result of STATCOM application for the Jeju-Haenam HVDC system. The Jeju-Haenam HVDC system is one of the typical HVDC system interconnected with the low short-circuit-ratio AC system, which is vulnerable to the commutation failure due to the AC voltage variation. STATCOM has been considered as an effective reactive-power compensator to increase short-circuit-ratio of the interconnected AC system. In this study, a simulation model of Jeju-Hacnam HVDC system with STATCOM was developed using PSCAD/EMTDC. The developed simulation model was utilized to analyze the dynamic performance analysis of Jeju-Haenam HVDC system with STATCOM. The analysis results show that STATCOM can improve the dynamic performance of Jeju-Haenam HVDC system, such as load-change recovery performance and fault recovery performance.

Technique for the Prevention of Inrush Current in a TCC Reactive Power Compensator

  • Yang, Ji-Hoon;Song, Sung-Geun;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.149-158
    • /
    • 2018
  • With the propagation and spread of the new regeneration energy and increase in electricity demand, power systems tend to be decentralized, and accordingly, the use of a power system stabilizer tends to expand for the stabilization of the distribution system. Thus, typical power system stabilizer, Static Var Compensator (SVC) is developed on a variety of topologies. In addition, the trend of technology leads from SVC to Static Synchronous Compensator(STATCOM) technology development. Recently, to overcome STATCOM's conversion losses and economic disadvantages, studies of a hybrid method using STATCOM and SVC in parallel have actively been conducted. This study proposes a new Soft-Step Switching method to limit inrush current problematic in Thyristor Controlled Capacitor (TCC) method in SVC function. In addition, to reduce Statcom's capacity, groups of reactive power compensation reactor and condenser for SVC were designed.

Utility Interactive Photovoltaic Generation System using PWM Current Source Inverter (PWM 전류형인버터를 이용한 계통연계형 태양광 발전시스템)

  • 박춘우;성낙규;이승환;강승욱;이훈구;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.109-112
    • /
    • 1996
  • In this paper, we composed utility interactive photovoltaic generation system of current source inverter, and controlled that low harmonic and high power factor are hold by supposing control and compensation method which is concerned with synchronous signal distortion and modulation delay. And we put parallel resonant circuit into dc link, so, magnitude of direct reactance was reduce by restraining direct current pulsation which had accumulation of pulsating power in alternating electrolytic condenser. Also we controlled that modulation factor is operated around maximum output of solar cell.

  • PDF

Analysis of effect on power system considering the maximum penetration limit of wind power (풍력발전 한계운전용량에 대한 계통영향 분석)

  • Myung, Ho-San;Kim, Bong-Eon;Kim, Hyeong-Taek;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • About supply and demand to see that you need to match, the limitations of wind power capacity is low demand and the commitment of the general generator will exist between the minimum generation. if the turbine's output can be controlled, The limitation of wind power capacity will be adopted based on instant power generation. Namely, The minimum limits of wind power generation based load operation by calculating the amount that is higher than if the output should be restricted to highest operation. in this paper, we committed to the demand for low enough that the combination of the general generator of wind power capacity to accommodate the operation of determining whether the limit is intended to. For this, power system analysis program PSS/E was used, Jeju system by implementing the model simulations were performed.

Development of a 100 hp HTS Synchronous Motor (100마력 고온초전도 동기전동기 개발)

  • Sohn Myung-Hwan;Baik Seung-Kyu;Lee Eon-Young;Kwon Young-Kil;Jo Young-Sik;Kim Jong-Moo;Moon Tae-Sun;Kim Yeong-Chun;Kwon Woon-Sik;Park Heui-Joo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.94-100
    • /
    • 2005
  • Korea Electrotechnology Research Institute(KERI) has successfully developed a 100hp-1800rpm-class high temperature superconducting(HTS) motor with high efficiency under partnership with Doosan Heavy Industries & Construction Co. Ltd. This motor has a HTS field winding and an air-cooled stator. The advantages of HTS motor can be represented by a reduction of 50% in both losses and size compared to conventional motors of the same rating. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. Independently, the rotor assembly was tested at the stationary state and combined with stator. The HTS field winding could be cooled into below 30K. Test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Also, load tests in motor mode driven by inverter were finished at KERI. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction. and experimental test results of the 100hp HTS machine.

Stability Analysis of Jeiu Power System added with HVDC (HVDC 추가도입에 대한 제주도 계통의 정태 안정도 분석)

  • Shin, Seong-Su;Kim, Do-Hyung;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.491-493
    • /
    • 2008
  • This paper presents results of comparing CSC HVDC with VSC HVDC on the stability in case of connecting Haenam to Jeju electrical power system, the steady-state stability in the case of Jeju electrical power system with CSC HYDC or VSC HVDC, is validated through PV curve, QV curve of Jeju electrical power system. And in the case of CSC HVDC, it is considered that synchronous condenser is connected or not. The results are compared each other. PSS/E simulation tool is used for the steady-state stability analysis.

  • PDF