• 제목/요약/키워드: Synchronous Manufacturing

검색결과 63건 처리시간 0.02초

Optical Design of A Compact Imaging Spectrometer for STSAT3

  • Lee, Jun-Ho;Jang, Tae-Seong;Yang, Ho-Soon;Rhee, Seung-Wu
    • Journal of the Optical Society of Korea
    • /
    • 제12권4호
    • /
    • pp.262-268
    • /
    • 2008
  • A compact imaging spectrometer (COMIS) for use in the STSAT3 microsatellite is currently under development. It is scheduled to be launched into a low Sun-synchronous Earth orbit (${\sim}700km$) by the end of 2010. COMIS was inspired by the success of CHRIS, which is a small hyperspectral imager developed for the ESA microsatellite PROBA. COMIS is designed to achieve nearly equivalent imaging capabilities of CHRIS in a smaller (65 mm diameter and 4.3 kg mass) and mechanically superior (in terms of alignment and robustness) package. Its main operational goal will be the imaging of Earth's surface and atmosphere with ground sampling distances of ${\sim}30m$ at the $18{\sim}62$ spectral bands ($4.0{\sim}1.05{\mu}m$). This imaging will be used for environmental monitoring, such as the in-land water quality monitoring of Paldang Lake, which is located next to Seoul, South Korea. The optics of COMIS consists of two parts: imaging telescope and dispersing relay optics. The imaging telescope, which operates at an f-ratio of 4.6, forms an image (of Earth's surface or atmosphere) onto an intermediate image plane. The dispersion relay optics disperses the image and relay it onto a CCD plane. All COMIS lenses and mirrors are spherical and are made from used silica exclusively. In addition, the optics is designed such that the optical axis of the dispersed image is parallel to the optical axis of the telescope. Previous efforts focused on manufacturing ease, alignment, assembly, testing, and improved robustness in space environments.

기계언어를 통한 Switched Reluctance Motor(SRM)의 Modeling과 특성 (Modeling and Characteristics of Switched Reluctance Motor (SRM) through Machine Language)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.117-122
    • /
    • 2021
  • 영구자석 동기전동기는 높은 출력밀도와 효율 확보가 가능하나, 제작에 필요한 재료의 가격이 비싸고 설계가 유도전동기 대비 다소 어려운 문제점을 가지고 있다. 따라서 효율 및 유지보수 편의성 등이 모두 고려된 최적의 전동기 개발 및 관련 제어연구가 필요한 실정이다. 뿐만 아니라, 실질적인 전동기에 의한 구동은 좁은 정격영역에서의 최고효율의 증대 요구와 전체 전기구동 영역에서의 평균 효율 증대, 평균 출력의 증대 요구로 이어지고 있다. 이러한 움직임에 의해 영구자석이 필요 없는 릴럭턴스 전동기 (Reluctance Motor)가 하나의 대안으로 검토되고 있다. 본 논문에서는 희토류 영구자석 전동기를 대체할 수 있는 미래기술 개발과, 희토류 저감형 전동기와 탈 희토류 전동기의 기술 선점을 요구하는 시대적 이슈 (Issue)에 맞춰 영구자석이 필요 없는 스위치드 릴럭턴스 전동기 (Switched Reluvtance Motor, SRM)에 대해 기계언어(C 언어)를 통한 modeling과 그에 따른 SRM의 특성을 연구하고자 한다.

저속 센서리스 제어의 역기전력 추정 성능 향상을 위한 모터 파라미터 추정과 전압 오차의 개선 (Identification of Motor Parameters and Improvement of Voltage Error for Improvement of Back-emf Estimation in Sensorless Control of Low Speed Operation)

  • 김경훈;윤철;조내수;장민호;권우현
    • 전기학회논문지
    • /
    • 제67권5호
    • /
    • pp.635-643
    • /
    • 2018
  • This paper propose a method to identify the motor parameters and improve input voltage error which affect the low speed position error of the back-emf(back electromotive force) based sensorless algorithm and to secure the operation reliability and stability even in the case where the load fluctuation is severe and the start and low speed operation frequently occurs. In the model-based observer used in this paper, stator resistance, inductance, and input voltage are particularly influential factors on low speed performance. Stator resistance can cause resistance value fluctuation which may occur in mass production process, and fluctuation of resistance value due to heat generated during operation. The inductance is influenced by the fluctuation due to the manufacturing dispersion and at a low speed where the change of the current is severe. In order to find stator resistance and inductance which have different initial values and fluctuate during operation and have a large influence on sensorless performance at low speed, they are commonly measured through 2-point calculation method by 2-step align current injection. The effect of voltage error is minimized by offsetting the voltage error. In addition, when the command voltage is used, it is difficult to estimate the back-emf due to the relatively large distortion voltage due to the dead time and the voltage drop of the power device. In this paper, we propose a simple circuit and method to detect the voltage by measuring the PWM(Pulse Width Modulation) pulse width and compensate the voltage drop of the power device with the table, thereby minimizing the position error due to the exact estimation of the back-emf at low speed. The suitability of the proposed algorithm is verified through experiment.