• Title/Summary/Keyword: Synchronization protocol

Search Result 259, Processing Time 0.022 seconds

An Energy-Efficient Asynchronous Sensor MAC Protocol Design for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 비동기 방식의 센서 MAC 프로토콜 설계)

  • Park, In-Hye;Lee, Hyung-Keun;Kang, Seok-Joong
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.86-94
    • /
    • 2012
  • Synchronization MAC Protocol such as S-MAC and T-MAC utilize duty cycling technique which peroidically operate wake-up and sleep state for reducing energy consumption. But synchronization MAC showed low energy efficiency because of additional control packets. For better energy consumption, Asychronization MAC protocols are suggested. For example, B-MAC, and X-MAC protocol adopt Low Power Listening (LPL) technique with CSMA algorithm. All nodes in these protocols joining a network with independent duty cycle schedules without additional synchronization control packets. For this reason, asynchronous MAC protocol improve energy efficiency. In this study, a low-power MAC protocol which is based on X-MAC protocol for wireless sensor network is proposed for better energy efficiency. For this protocol, we suggest preamble numbering, and virtual-synchronization technique between sender and receive node. Using TelosB mote for evaluate energy efficiency.

EETS : Energy- Efficient Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 시간 동기 알고리즘)

  • Kim, Soo-Joong;Hong, Sung-Hwa;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.322-330
    • /
    • 2007
  • Recent advances in wireless networks and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low power sensors and actuators, In large-scale networks, lots of timing-synchronization protocols already exist (such as NTP, GPS), In ad-hoc networks, especially wireless sensor networks, it is hard to synchronize all nodes in networks because it has no infrastructure. In addition, sensor nodes have low-power CPU (it cannot perform the complex computation), low batteries, and even they have to have active and inactive section by periods. Therefore, new approach to time synchronization is needed for wireless sensor networks, In this paper, I propose Energy-Efficient Time Synchronization (EETS) protocol providing network-wide time synchronization in wireless sensor networks, The algorithm is organized two phase, In first phase, I make a hierarchical tree with sensor nodes by broadcasting "Level Discovery" packet. In second phase, I synchronize them by exchanging time stamp packets, And I also consider send time, access time and propagation time. I have shown the performance of EETS comparing Timing-sync Protocol for Sensor Networks (TPSN) and Reference Broadcast Synchronization (RBS) about energy efficiency and time synchronization accuracy using NESLsim.

  • PDF

Technical Trend of Time Synchronization Equipment in Naro Space Center (나로우주센터 표준시각 동기화장비 기술동향)

  • Han, Yoo-Soo;Choi, Yong-Tae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.116-123
    • /
    • 2008
  • In the launch mission, mission control systems and tracking systems need time synchronization for data monitoring and data analysis. There are several standards for time synchronization and an adequate standard is selected according to the requirement of time accuracy and cost among time synchronization standards. Oscillators are used to maintain time accuracy. There are some kinds of oscillators with diverse characteristics and an adequate oscillator can be adopted according to time accuracy. In this paper, we will specify characteristics of several oscillators and standards generally used for time synchronization. And we will also introduce TSDN(time synchronization and display network) for time synchronization in Naro Space Center.

  • PDF

Improved MAC Protocol Synchronization Algorithm using Compensating value in Wireless Mesh Networks (무선메쉬네트워크환경에서 보정계수를 이용한 MAC프로토콜 동기화 개선 알고리즘)

  • Yun, Sang-Man;Lee, Soon-Sik;Lee, Sang-Wook;Jeon, Seong-Geun;Lee, Woo-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2218-2226
    • /
    • 2009
  • TDMA based MAC protocol supporting wireless mesh network has many advantage rather than 802.11 DCF/EDCA protocol based on packet. But TDMA based MAC protocol require new synchronization method because of mobile point oscillator's difference, and distributed environments. This thesis propose synchronization method for TDMA based MAC protocol. It divides MP(Mobile Points) states into 4 types. If MP is in sync mode, it schedules TDMA local start time in time skew interval using beacon. It proposes compensation algorithms to compensate time skew caused by clock drift. This proposal show that general time error and clock drift rate value reduced and get synchronized result.

Design of Spatial Data Synchronization System in Mobile Environment

  • Lee Hyejin;Kim Jinsuk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.245-248
    • /
    • 2004
  • In this paper, we propose a framework for synchronization of spatial data between mobile devices and a server by using SyncML(Synchronization Markup Language) that is standard specification for synchronization protocol. We used GML (Geographic Markup Language) to support interoperability of spatial data between various data sources. We also used metadata and catalog service to access and integrate distributed spatial data, considering relationships of spatial data and non-spatial data.

  • PDF

qPALS: Quality-Aware Synchrony Protocol for Distributed Real-Time Systems

  • Kang, Woochul;Sha, Lui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3361-3377
    • /
    • 2014
  • Synchronous computing models provided by real-time synchrony protocols, such as TTA [1] and PALS [2], greatly simplify the design, implementation, and verification of real-time distributed systems. However, their application to real systems has been limited since their assumptions on underlying systems are hard to satisfy. In particular, most previous real-time synchrony protocols hypothesize the existence of underlying fault tolerant real-time networks. This, however, might not be true in most soft real-time applications. In this paper, we propose a practical approach to a synchrony protocol, called Quality-Aware PALS (qPALS), which provides the benefits of a synchronous computing model in environments where no fault-tolerant real-time network is available. qPALS supports two flexible global synchronization protocols: one tailored for the performance and the other for the correctness of synchronization. Hence, applications can make a negotiation flexibly between performance and correctness. In qPALS, the Quality-of-Service (QoS) on synchronization and consistency is specified in a probabilistic manner, and the specified QoS is supported under dynamic and unpredictable network environments via a control-theoretic approach. Our simulation results show that qPALS supports highly reliable synchronization for critical events while still supporting the efficiency and performance even when the underlying network is not stable.

A Study on Implementation of IRIG-B Protocol for Time Synchronization of IEC 61850 based Merging Unit (IEC 61850 기반 병합단위장치의 시간 동기화를 위한 IRIG-B 프로토콜 구현에 관한 연구)

  • Kim, Gwan-Su;Lee, Hong-Hee;Kim, Byung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.303-310
    • /
    • 2008
  • Recently, IEC 61850 supports the standardized communication technique in both station bus and process bus, and presents substation automation model. In order to implement the IEC 61850 based communication in a substation using the MU (merging unit) which is one of the important data acquisition equipments in substation automation, the time synchronization is demanded for cooperative operation between the devices. This paper proposes the precision time synchronization technique using IRIG-B protocol to develop the MU under IEC 61850 communication protocol. The proposed technique is implemented and its performance is verified experimentally.

Measurement Scheme for One-Way Delay Variation with Detection and Removal of Clock Skew

  • Aoki, Makoto;Oki, Eiji;Rojas-Cessa, Roberto
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.854-862
    • /
    • 2010
  • One-way delay variation (OWDV) has become increasingly of interest to researchers as a way to evaluate network state and service quality, especially for real-time and streaming services such as voice-over-Internet-protocol (VoIP) and video. Many schemes for OWDV measurement require clock synchronization through the global-positioning system (GPS) or network time protocol. In clock-synchronized approaches, the accuracy of OWDV measurement depends on the accuracy of the clock synchronization. GPS provides highly accurate clock synchronization. However, the deployment of GPS on legacy network equipment might be slow and costly. This paper proposes a method for measuring OWDV that dispenses with clock synchronization. The clock synchronization problem is mainly caused by clock skew. The proposed approach is based on the measurement of inter-packet delay and accumulated OWDV. This paper shows the performance of the proposed scheme via simulations and through experiments in a VoIP network. The presented simulation and measurement results indicate that clock skew can be efficiently measured and removed and that OWDV can be measured without requiring clock synchronization.

CoAP-based Time Synchronization Algorithm in Sensor Network (센서 네트워크에서의 CoAP 기반 시각 동기화 기법)

  • Kim, Nac-Woo;Son, Seung-Chul;Park, Il-Kyun;Yu, Hong-Yeon;Lee, Byung-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.39-47
    • /
    • 2015
  • In this paper, we propose a new time synchronization algorithm using CoAP(constrained-application protocol) in sensor network environment, which handles a technique that synchronizes an explicit timestamp between sensor nodes not including an additional module for time-setting and sensor node gateway linked to internet time server. CoAP is a standard protocol for sensor data communication among sensor nodes and sensor node gateway to be built much less memory and power supply in constrained network surroundings including serious network jitter, packet losses, etc. We have supplied an exact time synchronization implementation among small and cheap IP-based sensor nodes or non-IP based sensor nodes and sensor node gateway in sensor network using CoAP message header's option extension. On behalf of conventional network time synchronization method, as our approach uses an exclusive protocol 'CoAP' in sensor network, it is not to become an additional burden for synchronization service to sensor nodes or sensor node gateway. This method has an average error about 2ms comparing to NTP service and offers a low-cost and robust network time synchronization algorithm.

An Optimal Design of a TDMA Baseband Modem for Relay Protocol (중계 프로토콜을 위한 TDMA 기저대역 중계모뎀의 최적 설계)

  • Bae, Yongwook;Ahn, Byoungchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.124-131
    • /
    • 2014
  • This paper describes a design of an adaptive baseband modem based on TDMA(time division multiple access) with a relay protocol function for wireless personal area networks. The designed baseband modem is controlled by a master synchronization signal and can be configured a relay network up to 14 hops. For efficient data relay communications, the internal buffer design is optimized by implementing a priority memory bus controller to a single port memory. And the priority memory bus controller is also designed to minimize the number of synthesized logic gates. To implement the synchronization function of the narrowband TDMA relay communication, the number of gates has been reduced by dividing the frame synchronization circuits and the network slot synchronization circuits. By using these methods, the number of gates are used about 37%(34,000 gates) on Xilinx FPGA XC6SLX9 which has 90,000 gates. For the 1024-bit frame size with a 32-bit synchronization word, the communication reception rate is 96.4%. The measured maximum transmission delay of the designed baseband modem is 230.4 msec for the 14-hop relay communication.