• Title/Summary/Keyword: Synaptic organization

Search Result 15, Processing Time 0.021 seconds

Fine Structure of Neurons and Synaptic Organization in Pallidum of the Cat (고양이 담창구 (Globus Pallidus)의 신경원과 연접기구에 대한 미세구조)

  • Park, W.B.;C.Y. Yun
    • The Korean Journal of Zoology
    • /
    • v.26 no.2
    • /
    • pp.107-123
    • /
    • 1983
  • The globus pallidus of normal cats were prepared for electron microscopic study following perfusion with a mixture of 1% paraformaldehyde and 1% glutaraldehyde solution. Neurons of two size categories were identified in 1 $\\mu$m araldite sections and their ultrastructural characteristics were studied in adjacent thin section. 1. Large neurons ($30 \\mum \\times 45 \\mum$ in diameter) had extensive areas of rough surfaced endoplasmic reticulm, abundant perinuclear Golgi complex, numerous mitochondria and lipofusin granule, and had a large spherical nucleus with shallow indentation of nuclear manbrane. Small neurons ($17 \\mum \\times 27 \\mum$ in diameter) had poorly rough surfaced endoplasmic reticulum, moderate number of mitochondria and randomly distributed Golgi complex. The nuclear envelope of this cell frequently showed multiple deep invagination. 2. Three types of axo-somatic synapses were identified on the basis of the size and shape of vesicle in the axon terminal and the symmetrical or asymmetrical thickening at the synaptic site. Type I synaptic terminal shows an even distribution of round and oval synaptic vesicles, and has a symmetrical synaptic thickening. Type II axon terminals reveal mostly round and pleomorphic vesicles and a few vesicles were localized near the presynaptic membrane in pale axoplasm and its synaptic thickening were symmetric. Type III axon terminals contain round vesicles, which were aggregated in the axoplasm, and has a asymmetrical synaptic thickening. 3. The majority of axo-somatic contact with the large and small neurons were type I, and type II and III synapes were rare.

  • PDF

Synaptic Organization of Vibrissa Afferent Terminals in the Trigeminal Interpolar Nucleus (삼차신경중간핵에서 저역치기계자극수용기 유래 들신경섬유 종말의 연접양상)

  • Ahn, Hyoung-Joon;Paik, Sang-Kyoo;Bae, Yong-Chul;Choi, Jong-Hoon;Kim, Chong-Youl
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.87-106
    • /
    • 2005
  • In order to evaluate the mechanism of transmission as well as processing of sensory information originating from low-threshold mechanoreceptor in oral and maxillofacial region at primary synaptic region of trigeminal nervous system, vibrissa afferent fibers of adult cat were labeled with intra-axonal HRP injection. Serial sections containing labeled boutons were obtained from the piece of trigeminal interpolar nucleus. Under electron microscope, total 30 labeled boutons were observed, and ultrastructural characteristics, frequency of occurence, synaptic organizations of vibrissa afferent terminals were analysed. The results were as follows: 1. Labeled boutons contained clear, spherical synaptic vesicles with diameter of 45$\sim$55nm. They formed asymmetrical synapse with dendrites showing definite postsynaptic density, larger synaptic cleft, multiple synaptic structures at various regions. With unlabeled axon terminals(p-ending) containing polymorphic synaptic vesicles, they formed symmetrical synapse showing indefinite postsynaptic density and narrower synaptic area. 2. Each labeled bouton formed 1 to 15 synapses, the average of 4.77$\pm$3.37 contacts per labeled bouton, with adjacent neuronal profiles. Relatively complex synaptic organization, which formed synapses with more than 5 neuronal profiles, was observed in a large number(46.7%, n=14) of labeled boutons. 3. Axo-somatic synapse was not observed. The number of axo-dendritic synapse was 1.83$\pm$1.37 per labeled bouton. Majority(85.0%) of axo-dendritic synapses were formed with dendritic shafts, nonprimary dendrites(n=47, 1.57$\pm$1.38/1 bouton), however, synapses formed with primary dendrites(n=6, 0.20$\pm$0.41/1 bouton) or dendritic spines(n=2, 0.07$\pm$0.25/1 bouton) were rare. 4. 76.7%(n=23) of labeled boutons formed axo-axonic synapse (2.93$\pm$2.36/1 bouton) with p-endings containing pleomorphic vesicles. Synaptic triad, in which p-endings formed synapses with labeled boutons and dendrites adjacent to the labeled boutons simultaneoulsy, were also observed in 60.0%(n=18) of labeled boutons. From the above results, vibrissa afferent terminals of adult cat showed distinctive synaptic organization in the trigeminal interpolar nucleus, thus, suggests their correlation with the function of the trigeminal interpolaris nucleus, which participates in processing of complex sensory information such as two-point discrimination and motivational-affective action. Further studies on physiologic functions such as quantitative analysis on ultrastructures of afferent terminals and nerve transmitters participating in presynaptic inhibition are required.

Structural Basis for LAR-RPTP-Mediated Synaptogenesis

  • Won, Seoung Youn;Kim, Ho Min
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.622-630
    • /
    • 2018
  • Leukocyte common antigen-related protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that regulate neurite outgrowth and neuronal regeneration. LAR-RPTPs have also received particular attention as the major presynaptic hubs for synapse organization through selective binding to numerous postsynaptic adhesion partners. Recent structural studies on LAR-RPTP-mediated trans-synaptic adhesion complexes have provided significant insight into the molecular basis of their specific interactions, the key codes for their selective binding, as well as the higher-order clustering of LAR-RPTPs necessary for synaptogenic activity. In this review, we summarize the structures of LAR-RPTPs in complex with various postsynaptic adhesion partners and discuss the molecular mechanisms underlying LAR-RPTP-mediated synaptogenesis.

Termination of Antennal Receptor Cells in Subesophageal Ganglion of Cabbage Butterfly Pieris rapae (Insecta, Lepidoptera) (배추횐나비 식도하신경절에 종지하는 촉각 지각신경세포에 관하여)

  • 전무진;이봉희
    • The Korean Journal of Zoology
    • /
    • v.35 no.2
    • /
    • pp.194-202
    • /
    • 1992
  • This study has been performed to investigate normal synaptic organizations in the subesophageal ganglion and terminaiion of antennal receptor cells in the ipsilateral subesophageal gan91ion of Pieris rapae. The various normal synaptic organizations in subesophageal ganglion could be differentiated into the five types. The proximal removal of a left antenna resulted in the weakly-dark, semidark and dark degenerations in the type I bostons of the ipsilateral subesophageal ganglion. Therefore, it was concluded that the axon terminals of the receptor cells projecting from the antenna into the brain form the type 1 synapses together with the dendrites in the ipsilateral subesophageal ganglion.

  • PDF

Artificial Brain for Robots (로봇을 위한 인공 두뇌 개발)

  • Lee, Kyoo-Bin;Kwon, Dong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.163-171
    • /
    • 2006
  • This paper introduces the research progress on the artificial brain in the Telerobotics and Control Laboratory at KAIST. This series of studies is based on the assumption that it will be possible to develop an artificial intelligence by copying the mechanisms of the animal brain. Two important brain mechanisms are considered: spike-timing dependent plasticity and dopaminergic plasticity. Each mechanism is implemented in two coding paradigms: spike-codes and rate-codes. Spike-timing dependent plasticity is essential for self-organization in the brain. Dopamine neurons deliver reward signals and modify the synaptic efficacies in order to maximize the predicted reward. This paper addresses how artificial intelligence can emerge by the synergy between self-organization and reinforcement learning. For implementation issues, the rate codes of the brain mechanisms are developed to calculate the neuron dynamics efficiently.

  • PDF

Distribution of Substance P Immunoreactive Neurons and Their Synaptic Organization in the Cat Thoracic Cord (고양이 흉수에서 Substance P 면역반응 신경원의 분포와 연접연구)

  • Lee, Seung-Kyun;Park, Soo-Seog
    • The Korean Journal of Pain
    • /
    • v.9 no.2
    • /
    • pp.326-335
    • /
    • 1996
  • Background: Though a number of studies have described the distribution of substance P(SP)-like immunoreactivity in the spinal cord, they have been focused on lamina I and II of the dorsal horn and there are little morphological studies on the topographic distribution and ultrastructure of the SP immunoreactive neurons especially in the ventral horn of the spinal cord. this study was conducted to identify distribution pattern of SP immunoreactive neurons and to difine the synaptic organization of their processes in ventral horn of the thoracic cord of the cat by preembbeding immunocytochemical method using SP antiserum. Methods: Five adults cats of either sex were used and deeply anesthetized by intramuscular injection of ketamine. After removal of the spinal cord, samples of thoracic cord were taken and placed in fresh fixative at $4^{\circ}C$ for 2 hours. Transverse sections $50{\mu}m$ thick were processed using the preembbeding immunocytochemical method and incubated consecutively in the specific primary antibody and the 10% normal goat serum, the rabbit anti-substance P antiserum, the biotin-labelled goat anti-rabbit IgG and finally the avidin-biotin-peroxidase complex. The processed tissue sections were throughly washed and stained in the black with 1% uranyl acetate. Section were examined on a electron microscope. Results: 1) SP immunoreactive neurons were observed in the gray matter around central canal. 2) In lamina I and II SP immunoreactivity was observed in both myelinated and unmyelinated nerve fibers, but in ventral horn only in the unmyelinated nerve fibers. 3) SP immunoreactive axon terminals with small round and large dense core vesicles made chemical synapses onto the dendrites of motor neurons in the ventral horn. Conclusion: SP immunoreactive neurons might play an important role in modulation of motor neurons in the ventral horn of the thoracic cord of the cat.

  • PDF

The Synaptic Organization of the Cat Striatum (고양이 선조체의 신경연접기구에 대한 형태학적 관찰)

  • Chung Jin-Woong;Choi Wol-Bong;Kwun Hung-Sik
    • Applied Microscopy
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 1978
  • An attempt has been made to discriminate the synapses in the striatum consisting caudate nucleus, putamen and fundus striati of the cat with emphasis on the characteristic structures of axon terminals and postsynaptic profiles. The differentiation is based on the size and shape of vesicle in the bouton terminal, and the symmetrical or asymmetrical thickening the pre- and postsynaptic membrane. Four types of synapses could be differentiated: Type I: the bontons with asymmetrical,synaptic thickenings contain round 45 nm diameter vesicles and contact cell soma, dendritic shafts and dendritic spines (74%). Type II : the boutons contain round 45nm diameter vesicles and are associated with symmetrical membrane thickenings. These synapses are formed on the soma and dendritic shafts (6%). Type III: the boutons with symmetrical membrane thickenings contain 50-60 nm diameter pleomorphic vesicles, and contact soma and dendritic shafts (18%). Type IV: the terminals contain flattened vesicles ($25{\times}45 nm$) and are associated with symmetrical membrane thickenings. These synapses are found in contact with soma and dendritic shafts. Additionally, the bouton en passant, which is expanded from myelinated or unmyelinated axons containing round vesicles (45nm diameter) contacts the dendritic shaft or dendritic spine with asymmetrical membrane thickenings. Two unusual types of synapses, axo-axonic and dendro-dendritic, are found occasionally.

  • PDF

Differential synapse density between Purkinje cell dendritic spine and parallel fiber varicosity in the rat cerebellum among the phylogenic lobules

  • Hyun-Wook Kim;Seung Hak Oh;Se Jeong Lee;Ji eun Na;Im Joo Rhyu
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.6.1-6.6
    • /
    • 2020
  • The cerebellum is a region of the brain that plays an important role in motor control. It is classified phylogenetically into archicerebellum, paleocerebellum and neocerebellum. The Purkinje cells are lined in a row called Purkinje cell layer and it has a unique dendritic branches with many spines. The previous study reported that there is a difference of synapse density according to the lobules based on large two-dimensional data. However, recent study with high voltage electron microscopy showed there was no differences in dendritic spine density of the Purkinje cell according to its phylogenetic lobule. We analyzed Purkinje cell density in the II, VI and X lobules by stereological modules and synaptic density was estimated by double disector based on Purkinje cell density in the molecular layer of each lobule. The results showed that there was significant difference in the Purkinje cell density and synapse number according to their phylogenetic lobules. The number of Purkinje cell in a given volume was larger in the archicerebellum, but synapse density was higher in the neocerebellum. These data suggest that cellular and synaptic organization of the Purkinje cell is different according to their phylogenetic background.

ULTRASTRUCTURAL ANALYSIS OF TOOTH PULP AFFERENTS TERMINALS IN THE MEDULLARY DORSAL HORN OF THE RAT (치수유래 구심성 신경섬유의 삼차신경 감각핵군에서의 연접특성)

  • Bae, Yong-Chul;Lee, Eun-Hee;Choy, Min-Ki;Hong, Su-Hyung;Kim, Hyun-Jung;Na, Soon-Hyeun;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.219-227
    • /
    • 2001
  • Little is known about processing mechanism of pain sensation of the oral cavity at the 1st synapse of trigeminal sensory nuclei. Serial ultrathin sections of tooth pulp afferent terminals, identified by the transganglionic transport of 1% wheatgerm agglutinin conjugated horseradish peroxidase, were investigated with electron microscope. Quantitative ultrastructural analysis was performed on digitizing tablet connected to Macintoshi personal computer (software; NIH Image 1.60, NIH, Bethesda, MD). Labeled boutons could be classified into two types by the shapes of containing vesicles : S bouton, which contained mainly spherical vesicles (Dia. 45-55 nm) and few large dense cored vesicles (Dia, 80-120nm), and LDCV bouton, which contained spherical vesicles as well as large number of large dense cored vesicles. Most of the parameters on the ultrastructural characteristic and synaptic organization of labeled boutons were similar between S and LDCV boutons, except shapes of containing vesicles. Majority of the labeled boutons showed simple synaptic arrangement. The labeled boutons were frequency presynaptic to dendritic spine, and to a lesser extent, dendritic shaft. They rarely synapsed with soma and adjacent proximal dendrite. A small proportion of labeled boutons made synaptic contacts with presynaptic, pleomorphic vesicles containing endings and synaptic triad. Morphometric parameters of labeled boutons including volume and surface area, total apposed area, mitochondrial volume, active zone area, vesicle number and density showed wide variation and these were not significantly different between S and LDCV boutons. The present study revealed characteristic features on ultrastructure and synaptic connection of pulpal afferents which may involved in transmission of oral pain sensation.

  • PDF

Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides

  • Lee, Ji Eun
    • Genomics & Informatics
    • /
    • v.14 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • Neuropeptides produced from prohormones by selective action of endopeptidases are vital signaling molecules, playing a critical role in a variety of physiological processes, such as addiction, depression, pain, and circadian rhythms. Neuropeptides bind to post-synaptic receptors and elicit cellular effects like classical neurotransmitters. While each neuropeptide could have its own biological function, mass spectrometry (MS) allows for the identification of the precise molecular forms of each peptide without a priori knowledge of the peptide identity and for the quantitation of neuropeptides in different conditions of the samples. MS-based neuropeptidomics approaches have been applied to various animal models and conditions to characterize and quantify novel neuropeptides, as well as known neuropeptides, advancing our understanding of nervous system function over the past decade. Here, we will present an overview of neuropeptides and MS-based neuropeptidomic strategies for the identification and quantitation of neuropeptides.