• Title/Summary/Keyword: Synaptic contact

Search Result 20, Processing Time 0.024 seconds

The Structure of Healing in the Functor and Semantic Arguments Appearing in the Poem "Bellflower Flower" by Cho Ji-Hoon (조지훈의 시 「도라지꽃」에 나타나는 함수자와 의미론적 논항의 치유의 구조)

  • Park, In-kwa
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.275-278
    • /
    • 2018
  • This study examines how poem and poetic ego of Cho Ji-Hoon form synapses. It is to clarify the synaptic structure of the healing, the contact point between the literary mechanism and the mechanism of the ego. Therefore, it aims to encode the active therapy by substituting the structure into the literary therapy program. Cho Ji-Hoon's poem "Bellflower Flower" is a mesh of poem, and a mesh of semantic arguments is set up for the 'Bellflower Flower' of functor. At this time, the longing that attracts depression to the net of the semantic argument is caught. This exists as a function of healing. If we embody a literary therapy program that utilizes the synaptic structure of this healing, it will be able to experience the function of literary therapy improved than before.

ELECTRON MICROSCOPIC STUDY OF SLOWLY ADAPTING PERIODONTAL MECHANORECEPTIVE PRIMARY AFFERENT FIBERS WITHIN THE SUBNUCLEUS ORALIS OF THE CAT (서순응형 치근막 일차구심성 신경섬유 종말부의 Subnucleus oralis에서의 시냅스 양상에 관한 전자현미경적 연구)

  • Kim, Moo-Jung;Bae, Yong-Chul;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.15 no.4
    • /
    • pp.281-301
    • /
    • 1993
  • It was revealed that the morphology and projection pattern of terminal arbors from single primary afferent are different among distinct fiber types, functional types and the different subdivision of trigeminal sensory nucleus complex(TSNC). But it was not identified the ultrastructural morphology and synaptic connections of terminal arbors from each primary afferent within TSNC. So we employed the intra-axonal horseradish peroxidase(HRP) injection technique to define the terminal arbors of primary afferent fiber from slowly adapting mechanoreceptors in the periodontal ligament of the cat, and examined 66 labeled terminal arbors within the rostrodorsomedial part(Vo.r) of the trigeminal nucleus oralis, electromicroscopically with 90nm serial sections. All the boutons labelled with HRP contained clear, spherical and uniform sized synaptic vesicles(diameter : $47.66{\pm}3.58nm$ ). Most of the labelled boutons were boutons en passant type and they were connected by unmyelinated axonal strand. In which neurofilament and microtubule was not developed but occasionally contained synaptic vesicle in contrast to the myelinated axon. The size of the labelled bouton was relatively small(long diameter : $1.46{\pm}0.24{\mu}m$, short diameter $0.85{\pm}0.26{\mu}m$, average diameter $1.15{\pm}0.24{\mu}m$) and the shape of which varied from dome to elongated shape, but scalloped glomerulus shape was not developed. Each primary ending in Vo.r made synapse with one or two neuronal propiles(average : $1.11{\pm}0.31$), of which, 89.4% of labelled boutons made synapse with only one neuronal pro pile, the remainder, 10.6% of labelled boutons, made synapse with two neuronal propile. So characteristically they made very simple synapse. Most of labelled boutons(80.03%) made asymmetrical synapse only with dendritic shaft or spine, and 6.1% of labelled boutons received symmetrical synapse from pleomorphic vesicle containing axonal ending(p-ending). So presynaptic inhibiton was relatively scarce. Synaptic triad, in which a p-ending is presynaptic both pre-and post-synaptic element of the axo-dendritic contact from the labelled primary ending was not observed.

  • PDF

Ultrastructural Study on the Development of the Carotid Body in Human Fetus (인태아(人胎兒) 경동맥체(頸動脈體)의 발육(發育)에 관(關)한 전자현미경적(電子顯微鏡的) 연구(硏究))

  • Yoon, Jae-Rhyong;Park, Byoung-Sun;Kim, Baik-Yoon
    • Applied Microscopy
    • /
    • v.24 no.1
    • /
    • pp.11-27
    • /
    • 1994
  • The morphological development of the carotid body was studied by electron microscope in human fetuses from 40mm to 260mm crown rump length (10-30 weeks of gestational age). At 40mm fetus, the carotid body was composed of cluster of primitive glomus cells, primitive supporting cells, unmyelinated nerve fibers, and blood capillaries. In connective tissue between internal and external carotid arteries adjacent to the superior cervical sympathetic ganglion, two types of glomus cells through all prenatal period were found. Dark cells contained a dense cytoplasm with conspicuous large dense-cored granules, whereas light cells had a less dense cytoplasm with dense-cored granules. The light cells contained dense-cored granules that were smaller and less abundant than those in the dark cells. The primitive supporting cells appeared star-shaped with attenuated cytoplasmic extensions intervening between the adjacent glomus cells. Synaptic contact between the axon terminals and soma of the glomus cells were first observed at 40mm fetus. In 80-100mm fetus, the carotid body contained tightly packed collection of glomus cells and supporting cells which surrounded the abundant thin-walled blood vessels. Intercellular junctions between the glomus cells and adjacent cells were commonly seen. Nerve endings on the glomus cells have the form of small boutons and the other from of large calyces. During the second half of the fetal period, the glomus cells were completely enveloped by supporting cells and nerve terminals. At 260mm, the morphological features of carotid body were similar to those of human adult. The result of this study demonstrates that there are differences between the carotid body and aorticopulmonary bodies, especially with respect to their synaptic complexes, abundant blood capillaries, and two glomus cell types.

  • PDF

Eine Structure of the Pineal Body of the Snapping Turtle (자라 송과체의 미세구조)

  • Choi, Jae-Kwon;Oh, Chang-Seok;Seol, Dong-Eun;Park, Sung-Sik;Cho, Young-Kook
    • Applied Microscopy
    • /
    • v.25 no.2
    • /
    • pp.39-52
    • /
    • 1995
  • Pinealocytes in the lower vertebrate are known to have photoreceptive function. These photoreceptor cells have been characterized morphologically in various species of lower vertebrates. No such ultrastructural studies, however, were reported in fresh water turtle. The purpose of this study is to characterize the pinealocytes and the phylogenetic evoluton of these cells is discussed in terms of functional analogy. I. Light microscopy: The pineal body was divided into incomplete lobules by connective tissue septa containing blood vessels, and parenchymal cells were arranged as irregular cords or follicular pattern. In the lobules, glandular lumina were present and contained often densely stained materials. II. Electron microscopy: The pineal parenchyma had three categories of cells: photoreceptor cells, supportive cells and nerve cells. The photoreceptor cells had darker cytoplasm compared to the supportive cells, and the enlarged apical cytoplasm(inner segment) containing abundant mitochondria and dense cored vescles protruded into the glandular lumen in which lamellar membrane stacks(outer segment), dense membranous materials, and cilia were present. Some of these lamellated membrane stacks appeared to be dege-nerating while others were apparently newly formed. Constricted neck portion of the photoreceptor cells contained longitudinally arranged abundant microtubules. centrioles and cross-striated rootlets. Cell body had well developed Golgi apparatus, abundant mitochondria, dense granules($0.5{\sim}1{\mu}m$), dense cored vesicles($70{\sim}100nm$), and rough endoplasmic reticulum occasionally with dense material within its cisterna. Basal portion of the photoreceptor cells had basal processes often with synaptic ribbons, which terminate in the complicated zone of cellular and neuronal processes. Synatpic ribbons often made contact with the nerve processes and the cell processes of neighboring cells. In some instances, these ribbons were noted free within the basal process and were also present at the basal cell mem-brane facing the basal lamina. Obvious nerve endings with clear and dense cored vesicles were observed among the parenchymal cells. Photoreceptor cells of the snapping turtle pineal body were generally similar in fine structure to those of other lower verterbrates reported previously, and suggested to have both photoreceptive and secretory functions which were modulated by pinealofugal and pinealopedal nerves. The supportive cells were characterized by having large dense granules($0.3{\sim}1{\mu}m$), abundant ribosomes, well developed Golgi apparatus and rough endoplasmic reticulum. These cells were furnished with microvilli on the luminal cell surfaces, and often had centrioles, striated rootlets, abundant filaments especially around the nucleus, and scattered microtubules. Some supportive cells had cell body close to the lumen and extended a long process reaching to basal lamina, which appeared to be a glial cell. Nerve cells within the parenchyma were difficult to identify, but some large cells located basally were suspected to be nerve cells, since they had synaptic ribbon contact with photoreceptor cells.

  • PDF

3-Dimensional Reconstruction of Parallel fiber-Purkinje Cell Synapses Using High-Voltage Electron Microscopy (고압전자현미경을 이용한 소뇌 평행섬유-조롱박세포간 신경연접의 3차원 재구성)

  • Lee, Kea-Joo;Kweon, Hee-Seok;Kang, Ji-Seoun;Rhyu, Im-Joo
    • Applied Microscopy
    • /
    • v.35 no.1
    • /
    • pp.31-39
    • /
    • 2005
  • Synapses are contact points where one neuron communicates with another. The morphological change of synapses under various physiological or pathological conditions has long been hypothesized to modify their functional properties. 3-dimensional (3-D) reconstruction of synapses with serial ultrathin sections has contributed to the understanding of ultrastructural dimensions and compositions of synapses. The 3-D reconstruction procedures, however, require a great amount of expertise as well as include prohibitively timeconsuming processes. Here, we introduce efficient 3-D reconstruction technique using high-voltage electron microscopy (HVEM). Primarily, we established an optimal section thickness and staining condition to observe synaptic structures in detail under HVEM. The result showed that synaptic profiles were preserved at the section thickness of 250 nm without the overlapping of synaptic ultrastructures. An increase in the reaction time of en bloc staining was most efficient to enhance contrast than the extension of postembedding staining or the addition of uranyl acetate during dehydration. Then, 3-D reconstruction of parallel fiber-Purkinje cell synapses in the rat cerebellum was carried out with serial HVEM images and reconstruction software. The images were aligned and the contours of synapses were outlined on each section. 3-D synapses were finally extracted from the section files by grouping all the synaptic contours. The reconstructed synapse model clearly demonstrated the configuration of pre and postsynaptic components. These results suggest that 3-D reconstruction of synapses using HVEM is much efficient and suitable for massive quantitative studies on synaptic connectivity than conventional TEM approach using numerous ultrathin sections.

Glial Mechanisms of Neuropathic Pain and Emerging Interventions

  • Jo, Daehyun;Chapman, C. Richard;Light, Alan R.
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Neuropathic pain is often refractory to intervention because of the complex etiology and an incomplete understanding of the mechanisms behind this type of pain. Glial cells, specifically microglia and astrocytes, are powerful modulators of pain and new targets of drug development for neuropathic pain. Glial activation could be the driving force behind chronic pain, maintaining the noxious signal transmission even after the original injury has healed. Glia express chemokine, purinergic, toll-like, glutaminergic and other receptors that enable them to respond to neural signals, and they can modulate neuronal synaptic function and neuronal excitability. Nerve injury upregulates multiple receptors in spinal microglia and astrocytes. Microglia influence neuronal communication by producing inflammatory products at the synapse, as do astrocytes because they completely encapsulate synapses and are in close contact with neuronal somas through gap junctions. Glia are the main source of inflammatory mediators in the central nervous system. New therapeutic strategies for neuropathic pain are emerging such as targeting the glial cells, novel pharmacologic approaches and gene therapy. Drugs targeting microglia and astrocytes, cytokine production, and neural structures including dorsal root ganglion are now under study, as is gene therapy. Isoform-specific inhibition will minimize the side effects produced by blocking all glia with a general inhibitor. Enhancing the anti-inflammatory cytokines could prove more beneficial than administering proinflammatory cytokine antagonists that block glial activation systemically. Research on therapeutic gene transfer to the central nervous system is underway, although obstacles prevent immediate clinical application.

Differential Expression of NCAM-180 in the Olfactory System and Retina of the Rat

  • Hyeyoung Koo
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.259-267
    • /
    • 1999
  • The expression of the neural cell adhesion molecule-180 (NCAM-180), which accumulates at contact sites between cells and may be responsible for the stabilization of cell contacts, was studied in the olfactory system and retina of developing and adult rats. From embryonic day 12 onwards, which was the earliest stage examined, the NCAM-180 pathway directing to the presumptive olfactory bulb was observed. In later stages, olfactory neurons and fasciculating axons in the olfactory epithelium and nerve fiber layer and glomeruli of the olfactory bulb expressed NCAM-180. From postnatal day 0, immunolabelling pattern of the olfactory epithelium and olfactory bulb were the same as that during later stages. NCAM-180 immunoreactivity was present on differentiating retinal cells and persisted on those cells throughout adulthood. However, contrary to the olfactory nerve which remained detectable in the adult, the optic nerve was only transiently expressed with NCAM-180 and was no longer detectable in the adult. The presence of NCAM-180 in olfactory tissues suggests their possible role in pathfinding, differentiation, fasciculation and synaptic plasticity. The continued presence of NCAM-180 in the olfactory system examined may underlie its continuous cell turnover and regenerative capacity. The continuous expression of NCAM-180 in ganglion cells, bipolar cells and photoreceptor cells, also suggests potential regenerating capability and some plastic functions for these cells in the adult. Since the expression of NCAM-180 by the optic nerve was restricted to the period of special histogenetic events, for example, during axonal growth and synaptogenesis, it is possible that the lack of NCAM-180 in the adult optic nerve might cause a nonpermissive environment for the regeneration and result in regenerative failure of this system.

  • PDF

Three-dimensional Structure of the Processes of Photoreceptor Cells and Nerve Cells in the Pineal Organ of the Catfish, Parasilurus asotus (메기 송과체의 광수용세포 및 신경세포 돌기의 3차원적 구조)

  • Nam, Kwang-Il;Lee, Song-Eun;Oh, Chang-Seok;Bae, Choon-Sang;Park, Sung-Sik
    • Applied Microscopy
    • /
    • v.30 no.3
    • /
    • pp.255-264
    • /
    • 2000
  • The topographic correlation between the processes of photoreceptor cells and nerve cells in the pineal organ of catfish, Parasiluns asotus, was studied using 3D electron microscopy. Upon examination, one neuronal cell process was found to pass through the intertwined processes of the photoreceptor cells. Interestingly , we observed two photoreceptor processes interlock, after which two buds from one process penetrated the other. Synaptic ribbons were observed in the cytoplasm of the photoreceptor cella, especially near the neuronal process. Macrophages were occasionally found to be contact with the outer segments of the photoreceptor cells in the pineal lumen.

  • PDF

An Electron Microscopic Study on the Main Sensory Trigeminal Nucleus in the Aging Rat Brain (노화된 흰쥐 뇌 삼차신경주감각핵에 관한 전자현미경적 연구)

  • Kim, Myung-Kook
    • Applied Microscopy
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 1995
  • The purpose of this study was to investigate the main sensory trigeminal nucleus in the aging rat brain by means of electron microscope. Male Sprague-Dawley rats, two (control group) and thirty six (aging group) months of age, were used. These animals were sacrificed by perfusion fixation with 2.5% glutaraldehyde-2.0% paraformaldehyde (0.1M phosphate buffer, pH 7.4) under sodium pentobarbital. The objective area was punched out with a sharp-edged metal cylinder of 0.8 mm in diameter. These blocks of tissue were then washed in 0.1M phosphate buffer, postfixed in 2% osmium tetroxide, dehydrated in a graded series of ethyl alcohol, and embedded in Epon 812. Thin sections were cut with Super Nova ultramicrotome, pick up on grids and double stained with lead citrate and uranyl acetate, and observed in JEOL 100B electron microscope. The results were as follows: 1. In the control group, the neuronal cell body of the main sensory trigeminal nucleus was filled with nucleus, Golgi complex, Nissl substance, mitochondria, microfilaments and microtubules. However, few Nissl substances are seen in neuronal cell body. Axoaxonic synapse, axodendritic synapse, axosomatic synapse, axospinous synapse, myelinated and unmyelinated nerve fibers were well organized around cell bodies. Neurons with abnormal changes were not seen. 2. In the aging group, the neuronal cell body of the main sensory trigeminal nucleus contained large number of lipofuscin granules, dense body and swollen mitochondria. Terminal boutons contained glycogen, crystal-like vesicle and membranous indicating first signs of degeneration. The dendrites were found to be in synaptic contact with altered axon terminals. Frequently axons filled with dark axoplasn and splitted myelin sheath were noticed.

  • PDF

Studies on Molecular Plasticity of Bergmann Glia following Purkinje Cell Degeneration (조롱박신경세포의 변성에 따른 버그만아교세포의 면역조직학적 연구)

  • Yoon, Chul-Jong;Cho, Sa-Sun;Lee, Ha-Kyu;Park, Min-Chul
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.165-176
    • /
    • 2005
  • Studies on molecular plasticity of Bermann glia (BG) after harmaline-induced Purkinje cell (PC) degeneration in the rat cerebellum. The intimate structural relationship between BG and PC, evidenced by the sheathing of the PC dendrites by veil-like process from the BG has been suggestive of the close functional relationship between these two cell types. However, little is known about metabolic couplings between these cells. This study designed to investigate molecular plasticity of BG in the rat cerebellum in which PCs were chemically ablated by harmaline treatment. Immunohistochemical examination reveals that harmaline induced PC degeneration causes a marked glial reaction in the cerebellum with activated BG and microglia aligned in parasagittal stripes within the vermis. In these strips, activated BG were associated with upregulaion of metallotheionein, while GLAST and was down regulated, as compared with nearby intact area where both BG are in contact with PCs. The data from this study demonstrate that BG can change their phenotypic expression when BG loose their contact with PCs. It is conceivable that activated BG may upregulate structural proteins, metallothionein expression to use for their proliferation and hypertrophy; metallothionein expression to cope with oxidative stress induced by PC degeneration and microglial activation. On the contrary, BG may down regulated expression of GLAST because sustained loss of contact with PCs would eliminate the necessity for the cellular machinery involved glutamate metabolism. In conclusion, BG might respond man to death of PCs by undergoing a change in metabolic state. It seems possible that signaling molecules released from PCs regulates the phenotype expression of BG. Also ultrastructures in the organelles of normal PC and BG are distinguished by mitochondrial appearance, and distributed vesicles at the synaptic area in the cytoplasm.