• Title/Summary/Keyword: Synaptic Plasticity

Search Result 135, Processing Time 0.021 seconds

Effects of NEES on PARP Expression in the Corpus Striatum in Rats Induced with Transient Global Ischemia

  • Lee, Jung Sook;Song, Young Wha;Kim, Sung Won
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.3 no.2
    • /
    • pp.429-434
    • /
    • 2012
  • Ischemia, the leading cause of strokes, is known to be deeply related to synaptic plasticity and apoptosis in tissue damage due to ischemic conditions or trauma. The purpose of this study was to research the effects of NEES(needle electrode electrical stimulation) in brain cells of ischemia-induced rat, more specifically the effects of Poly[ADP-ribose] polymerase(PARP) on the corpus striatum. Ischemia was induced in SD mice by occluding the common carotid artery for 5 minutes, after which blood was re-perfused. NEES was applied to acupuncture points, at 12, 24, and 48 hours post-ischemia on the joksamri, and at 24 hours post-ischemia on the hapgok. Protein expression was investigated through PARP antibody immuno-reactive cells in the cerebral nerve cells and western blotting. The number of PARP reactive cells in the corpus striatum 24 hours post-ischemia was significantly(p<.05) smaller in the NEES group compared to the global ischemia(GI) group. PARP expression 24 hours post-ischemia was very significantly smaller in the NEES group compared to the GI group. Results show that ischemia increases PARP expression and stimulates necrosis, making it a leading cause of death of nerve cells. NEES can decrease protein expression related to cell death, protecting neurons and preventing neuronal apoptosis.

A Study on the Effects of Needle Electrode Electrical Stimulation on the Number of c-Fos Response Cells and c-Fos Expression in the Global Ischemic Rats

  • Kim, Sung Won;Song, Young Wha;Lee, Jung Sook
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.2
    • /
    • pp.1031-1036
    • /
    • 2016
  • c-Fos is known to related to synaptic plasticity and apoptosis in damage from ischemia or external injury. The purpose of this study was to investigate whether needle electrode electrical stimulation(NEES) is effective in increasing the number of c-Fos response cells and c-Fos expression in striatum after global ischemia in rats. There were no treatment and occlusion in the control group, global ischemia(GI) group were no treatment after carotid artery occlusion, and needle electrode electrical stimulation(NEES) group were treated with NEES after GI induced. The number of striatum c-Fos response cells and c-Fos protein expression significantly decreased in the NEES group compared to the GI group after 12, 24, 48 hours. The results of the present study suggest that NEES is ineffective in improving global ischemia in rats and may also be ineffective in the globally ischemic human brain.

Immunohistochemical detection of GluA1 subunit of AMPA receptor in the rat nucleus accumbens following cocaine exposure

  • Cai, Wen Ting;Han, Joonyeup;Kim, Wha Young;Kim, Jeong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.79-85
    • /
    • 2021
  • α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors are differentially regulated in the nucleus accumbens (NAcc) of the brain after cocaine exposure. However, these results are supported only by biochemical and electrophysiological methods, but have not been validated with immunohistochemistry. To overcome the restriction of antigen loss on the postsynaptic target molecules that occurs during perfusion-fixation, we adopted an immersion-fixation method that enabled us to immunohistochemically quantify the expression levels of the AMPA receptor GluA1 subunit in the NAcc. Interestingly, compared to saline exposure, cocaine significantly increased the immunofluorescence intensity of GluA1 in two sub-regions, the core and the shell, of the NAcc on withdrawal day 21 following cocaine exposure, which led to locomotor sensitization. Increases in GluA1 intensity were observed in both the extra-post synaptic density (PSD) and PSD areas in the two sub-regions of the NAcc. These results clearly indicate that AMPA receptor plasticity, as exemplified by GluA1, in the NAcc can be visually detected by immunohistochemistry and confocal imaging. These results expand our understanding of the molecular changes occurring in neuronal synapses by adding a new form of analysis to conventional biochemical and electrophysiological methods.

Panax Ginseng in the treatment of Alzheimer's disease and vascular dementia

  • Zhiyong Wang;Zhen Zhang;Jiangang Liu;Mingdong Guo;Hao Li
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.506-514
    • /
    • 2023
  • Dementia has become one of the most important diseases threatening human health. Alzheimer's disease (AD) and vascular dementia (VaD) have the highest incidence rates among the types of dementia, but until now, therapeutic methods have been limited. Panax ginseng has been used in China for thousands of years to treat dementia, and modern medical studies have found that it contains multiple active components, such as ginsenosides, polysaccharides, amino acids, volatile oils and polyacetylenes, many of which have therapeutic effects in treating AD and VaD. Studies have found that ginsenosides have multitarget therapeutic effects in treating dementia, such as regulation of synaptic plasticity and the cholinergic system, inhibition of Aβ aggravation and tau hyperphosphorylation, anti-neuroinflammation, anti-oxidation effects and anti-apoptosis effects. Other active components of Panax ginseng, such as gintonin, oligosaccharides, polysaccharides and ginseng proteins, also have therapeutic effects on AD and VaD. The effectiveness of ginseng-containing Chinese medicine compounds has also been confirmed by clinical and basic investigations in treating AD and VaD. In this review, we summarized the potential therapeutic effects and related mechanisms of Panax ginseng in treating AD and VaD to provide some examples for further studies.

Differential Expression of NCAM-180 in the Olfactory System and Retina of the Rat

  • Hyeyoung Koo
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.259-267
    • /
    • 1999
  • The expression of the neural cell adhesion molecule-180 (NCAM-180), which accumulates at contact sites between cells and may be responsible for the stabilization of cell contacts, was studied in the olfactory system and retina of developing and adult rats. From embryonic day 12 onwards, which was the earliest stage examined, the NCAM-180 pathway directing to the presumptive olfactory bulb was observed. In later stages, olfactory neurons and fasciculating axons in the olfactory epithelium and nerve fiber layer and glomeruli of the olfactory bulb expressed NCAM-180. From postnatal day 0, immunolabelling pattern of the olfactory epithelium and olfactory bulb were the same as that during later stages. NCAM-180 immunoreactivity was present on differentiating retinal cells and persisted on those cells throughout adulthood. However, contrary to the olfactory nerve which remained detectable in the adult, the optic nerve was only transiently expressed with NCAM-180 and was no longer detectable in the adult. The presence of NCAM-180 in olfactory tissues suggests their possible role in pathfinding, differentiation, fasciculation and synaptic plasticity. The continued presence of NCAM-180 in the olfactory system examined may underlie its continuous cell turnover and regenerative capacity. The continuous expression of NCAM-180 in ganglion cells, bipolar cells and photoreceptor cells, also suggests potential regenerating capability and some plastic functions for these cells in the adult. Since the expression of NCAM-180 by the optic nerve was restricted to the period of special histogenetic events, for example, during axonal growth and synaptogenesis, it is possible that the lack of NCAM-180 in the adult optic nerve might cause a nonpermissive environment for the regeneration and result in regenerative failure of this system.

  • PDF

Identification of Genes Involved in the Onset of Female Puberty of Rat

  • Eun Jung Choi;Byung Ju Lee
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.319-329
    • /
    • 1999
  • Onset of female puberty follows a series of prepubertal cellular and molecular events including changes of synaptic plasticity, synthetic and releasing activity and gene expression. Dramatic increase of gonadal steroid level is one of the most prominent changes before the onset of puberty. Based on the importance of steroid feedback upon the hypothalamus, we adopted an estrogen sterilized rat (ESR) model where 100 ng of 17$\eta$-estradiol were administered into neonatal pubs for 7 days after birth. To identify genes involved in the onset of female puberty, we applied PCR differential display using RNA samples derived from ESR and control rat hypothalami. About 100 out of more than 1000 RNA species examined displayed differential expression patterns between a 60-day old control rat and ESR. Sequence analysis of differentially amplified PCR products showed homology with genes such as mouse kinesin superfamily-associated protein 3 (KAP3) and several cDNAs previously described by others in mouse and human tissues. Several gene products such as 2-1 and 8-1 corresponded to novel DNA sequences. We analyzed mRNA levels of KAP3, 2-1 and 8-1 genes in the hypothalami derived from neonatal, 6-, 28-, 31-, and 40-day old rats. Northern blot analysis showed that mRNAs of KAP3, 2-1 and 8-1 genes were markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited prepubertal increases in KAP3, 2-1 and 8-1 mRNA levels. Therefore, these genes may play important roles in the initiation of hypothalamic puberty. In addition, intracerebroventricular (icv) injection of antisense KAP3 oligodeoxynucleotide (ODN) clearly delayed puberty initiation determined by vaginal opening, which further confirmed that KAP3 plays an important role in the regulation of puberty initiation.

  • PDF

NgR1 Expressed in P19 Embryonal Carcinoma Cells Differentiated by Retinoic Acid Can Activate STAT3

  • Lee, Su In;Yun, Jieun;Baek, Ji-Young;Jeong, Yun-Ji;Kim, Jin-Ah;Kang, Jong Soon;Park, Sun Hong;Kim, Sang Kyum;Park, Song-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.105-109
    • /
    • 2015
  • NgR1, a Nogo receptor, is involved in inhibition of neurite outgrowth and axonal regeneration and regulation of synaptic plasticity. P19 embryonal carcinoma cells were induced to differentiate into neuron-like cells using all trans-retinoic acid and the presence and/or function of cellular molecules, such as NgR1, NMDA receptors and STAT3, were examined. Neuronally differentiated P19 cells expressed the mRNA and protein of NgR1, which could stimulate the phosphorylation of STAT3 when activated by Nogo-P4 peptide, an active segment of Nogo-66. During the whole period of differentiation, mRNAs of all of the NMDA receptor subtypes tested (NR1, NR2A-2D) were consistently expressed, which meant that neuronally differentiated P19 cells maintained some characteristics of neurons, especially central nervous system neurons. Our results suggests that neuronally differentiated P19 cells expressing NgR1 may be an efficient and convenient in vitro model for studying the molecular mechanism of cellular events that involve NgR1 and its binding partners, and for screening compounds that activate or inhibit NgR1.

Effects of Repeated Nicotine Treatment on the Changes in Glutamate Receptor Subunits Levels in Mesocorticolimbic Dopamine Areas

  • Lee, Kuem-Ju;Kim, Dong-Hoon;Choi, Song-Hyen;Shin, You-Chan;Park, Sang-Ha;Moon, Bo-Hyun;Kang, Seung-Woo;Cho, Eu-Jin;Choi, Sang-Hyun;Chun, Boe-Gwun;Lee, Min-Soo;Shin, Kyung-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.4
    • /
    • pp.139-144
    • /
    • 2007
  • Recent studies suggest that alterations in glutamate receptor subunit levels in mesocorticolimbic dopamine areas could account for neural adaptations in response to psychostimulant drugs. Although many drugs of abuse induce changes in ionotropic glutamate receptor subunits in mesocorticolimbic dopamine areas, the changes of ionotropic glutamate receptor subunits by repeated nicotine treatment in these areas are not known. To answer this question, we injected male Sprague-Dawley rats twice daily with nicotine (0.4 mg/kg) or saline (1 ml/kg) for 10 days. The immunoreactivity of NR1, GluR1, and GluR2 glutamate receptor subunits was examined $16{\sim}18 h$ after the last injection of saline or nicotine. Repeated nicotine treatment significantly increased NR1 levels in the ventral tegmental area (VTA). In addition, repeated nicotine treatment showed a tendency towards an increase in GluR1 levels in the VTA as well as in striatum. However, there was no significant change in glutamate receptor subunits in other areas including nucleus accumbens (NAc). These results demonstrate that repeated nicotine treatment increases NR1 levels in VTA similarly to other drugs of abuse, suggesting that elevated glutamate receptor subunits in the VTA, but not NAc may be involved in the excitation of mesocorticolimbic dopamine neurons by nicotine.

Regulation of Nicotinic Acetylcholine Receptor by Tyrosine Kinase in Autonomic Major Pelvic Ganglion Neurons

  • Kim, Dae-Ran;Ahn, Sung-Wan;Park, Kyu-Sang;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.13 no.2
    • /
    • pp.119-125
    • /
    • 2007
  • It is widely known that protein tyrosine kinases (PTKs) are involved in controlling many biological processes such as cell growth, differentiation, proliferation, survival and apoptosis. An $\alpha3\beta4$ subunit combination acts as a major functional acetylcholine receptor (nAChRs) in male rat major pelvic ganglion (MPG) neurons, and their activation induces fast inward currents and intracellular calcium increases. Recently it has been reported that the activity of acetylcholine receptors (AChRs) in some neurons can be negatively regulated by PTKs. However, the exact mechanism of regulation of nAChRs by PTKs is poorly understood. Therefore, we examined the potential role particular in nAChR by PTK using electrophysiology and calcium imaging in male rat MPG neurons. ACh induced inward currents and $(Ca^{2+})_i$ increases in MPG neurons, concomitantly. These responses were inhibited by more than 90% in $Na^+$- or $Ca^{2+}$- free solution. $\alpha$-conotoxin AuIB, a selective $\alpha3\beta4$ nAChR blocket, inhibited ACh-induced inward currents. Genistein (10 $\mu$M), a broad-spectrum tyrosine kinase inhibitor, markedly decreased ACh-induced currents and $Ca^{2+}$ transients, whereas 10 $\mu$M genistin, an inactive analogue, had little effect. Overall these data suggest that the activities of $\alpha3\beta4$ AChRs in MPG neurons are positively regulated by PTK. In conclusion, trosine kinase may be one of the key factors in the regulation of $\alpha3\beta4$ nAChRs in rat MPG neurons, which may play an important roles in the autonomic neuronal function such as synaptic transmission, autonomic reflex, and neuronal plasticity.

  • PDF

Effects of Repetitive Transcranial Magnetic Stimulation on Enhancement of Cognitive Function in Focal Ischemic Stroke Rat Model (국소 허혈성 뇌졸중 모델 흰쥐의 인지기능에 반복경두개자기자극이 미치는 효과)

  • Lee, Jung-In;Kim, Gye-Yeop;Nam, Ki-Won;Lee, Dong-Woo;Kim, Ki-Do;Kim, Kyung-Yoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • Purpose : This study is intended to examine the repetitive transcranial magnetic stimulation on cognitive function in the focal ischemic stroke rat model. Methods : This study selected 30 Sprague-Dawley rats of 8 weeks. The groups were divided into two groups and assigned 15 rats to each group. Control group: Non-treatment after injured by focal ischemic stroke; Experimental group: application of repetitive transcranial magnetic stimulation(0.1 Tesla, 25 Hz, 20 min/time, 2 times/day, 5 days/2 week) after injured by focal ischemic stroke. To assess the effect of rTMS, the passive avoidance test, spatial learning and memory ability test were analyzed at the pre, 1 day, $7^{th}$ day, $14^{th}$ day and immunohistochemistric response of BDNF were analyzed in the hippocampal dentate gyrus at $7^{th}$ day, $14^{th}$ day. Results : In passive avoidance test, the outcome of experimental group was different significantly than the control group at the $7^{th}$ day, $14^{th}$ day. In spatial learning and memory ability test, the outcome of experimental group was different significantly than the control group at the $7^{th}$ day, $14^{th}$ day. In immunohistochemistric response of BDNF in the hippocampal dentate gyrus, experimental groups was more increased than control group. Conclusion : These result suggest that improved cognitive function by repetitive transcranial magnetic stimulation after focal ischemic stroke is associated with dynamically altered expression of BDNF in hippocampal dentate gyrus and that is related with synaptic plasticity.