• 제목/요약/키워드: Syn-gas

검색결과 36건 처리시간 0.029초

추력 제어를 고려한 액체로켓 엔진시스템 과도해석 (Transient Analysis of a Liquid Rocket Engine System Considering Thrust Control)

  • 박순영;최환석;설우석
    • 한국추진공학회지
    • /
    • 제8권4호
    • /
    • pp.67-75
    • /
    • 2004
  • 액체로켓 엔진시스템에 있어서 과도 해석은 시스템 시험 항목이나 시험 횟수의 선정과 개발 기간 등의 단축을 위해 반드시 필요한 항목이다. 본 연구에서는 터보펌프 공급식 로켓 엔진의 수학적 모델을 구성하였으며. 이를 이용하여 추력 제어 밸브의 개도 변화에 따른 엔진의 작동 모드 변화에 대한 과도해석을 수행하였다. 검증을 위하여 AnaSyn을 이용한 모드 해석 결과와 비교하여 2% 범위 내로 일치하는 것을 확인하였다. 또한 로켓 엔진 시스템의 과도해석 모델을 이용하여 엔진 구성품에 대한 시스템 차원의 설계 변수 결정이 가능함을 보였다. 압력안정기(pressure stabilizer)는 가스발생기 혼합비를 균일하게 유지시켜주는 장치로서, 이에 대한 감쇠 강제진동 모델을 세워 고유진동수와 감쇠비의 함수로 안정 영역을 구하였다.

수소 생성을 위한 플라즈마트론 개발 (Plasmatron Development for a Hydrogen Production)

  • 김성천;전영남
    • 대한환경공학회지
    • /
    • 제28권1호
    • /
    • pp.48-53
    • /
    • 2006
  • 본 논문에서는 plasmatron을 사용하여 프로판의 개질에 의해 SynGas 생산의 최적의 조건을 연구하였다. 플라즈마는 공기와 아크 방전에 의해 생성되며 합성 가스의 상관 관계뿐만 아니라 수증기, $CO_2$ 또는 반응기에 촉매를 추가하여 프로판 전환에 미치는 영향과 수소의 수율, $H_2/CO$ 비에 대해 연구하였다. $O_2/C_3H_8$ 유량비, $H_2O/C_3H_8$ 유량비와 $CO_2/C_3H_8$ 유량비를 각각 $0.94{\sim}1.48,\;4.3{\sim}10$$0.8{\sim}3.05$로 변화하였을 때, $H_2O/C_3H_8$ 유량비의 변화 결과가 최대 $28.2{\sim}31.6%$$H_2$ 농도를 나타냈으며, 촉매를 추가하고 $H_2O/C_3H_8$ 유량비의 변화결과 $6.6{\sim}7.1%$의 최소 CO 농도를 나타냈다. 그리고 $H_2/CO$ 비는 $3.89{\sim}4.86$을 나타냈다.

Universal Plasma-chemical Module for Carbon-containing Raw Materials Treatment

  • Park, Hyun-Seo;Zasypkin, I.M.
    • 자원리싸이클링
    • /
    • 제13권1호
    • /
    • pp.59-67
    • /
    • 2004
  • A universal plasma-chemical module (PChM) for the industrial processing of different hydrocarbon raw material pyrolysis was designed and tested. Laboratory investigations for the plasma-chemical method of acetylene production from natural gas and different coals were made. Similar laboratory tests on the industrial production of acetylene as a raw material for organic syn-thesis were developed using the PChM. A comparison of the suggested plasma-chemical method with the traditional process of acetylene production were carried out. The outlook of the plasma-chemical method was shown.

폐기물 열분해 가스화용융 기술 (The Gasification & Melting Treatment Technology of Waste)

  • 허일상
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.133-138
    • /
    • 2005
  • The worldwide trend of waste treatment technology is rapidly transferring from "incineration system" to "gasification & melting system" which can derive the resources from waste and charge no more environmental burden to nature. And therefore it is necessary to adopt gasification & melting system to prevent the land pollution and to solve the problem of landfill area. Among several thermal waste treatment processes gasification and melting system is the representative process which can transfer waste to resources such as syn-gas, molten slag, metal hydroxide, mixed salt and sulfur through the process of compaction, pyrolysis, gasification and melting.

  • PDF

Theoretical Studies of the Gas-Phase Identity Nucleophilic Substitution Reactions of Cyclopentadienyl Halides

  • Lee, Ik-Choon;Li, Hong-Guang;Kim, Chang-Kon;Lee, Bon-Su;Kim, Chan-Kyung;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권5호
    • /
    • pp.583-592
    • /
    • 2003
  • The gas phase identity nucleophilic substitution reactions of halide anions (X = F, Cl, Br) with cyclopentadienyl halides (1) are investigated at the B3LYP/6-311+G**, MP2/6-311+G** and G2(+)MP2 levels involving five reaction pathways: σ-attack $S_N2$, β-$S_N$2'-syn, β-$S_N$2'-anti, γ-$S_N$2'-syn and γ-$S_N$2'-anti paths. In addition, the halide exchange reactions at the saturated analogue, cyclopentyl halides (2), and the monohapto circumambulatory halide rearrangements in 1 are also studied at the same three levels of theory. In the σ-attack $S_N2$ transition state for 1 weak positive charge develops in the ring with X = F while negative charge develops with X = Cl and Br leading to a higher energy barrier with X = F but to lower energy barriers with X = Cl and Br than for the corresponding reactions of 2. The π-attack β-$S_N$2' transition states are stabilized by the strong $n_C-{\pi}^{*}_{C=C}$ charge transfer interactions, whereas the π-attack γ-$S_N$2' transition states are stabilized by the strong $n_C-{\sigma}^{*}_{C-X}$ interactions. For all types of reaction paths, the energy barriers are lower with X = F than Cl and Br due to the greater bond energy gain in the partial C-X bond formation with X = F. The β-$S_N$2' paths are favored over the γ-$S_N$2' paths only with X = F and the reverse holds with X = Cl and Br. The σ-attack $S_N2$ reaction provides the lowest energy barrier with X = Cl and Br, but that with X = F is the highest energy barrier path. Activation energies for the circumambulatory rearrangement processes are much higher (by more than 18 kcal $mol^{-1}$) than those for the corresponding $S_N2$ reaction path. Overall the gas-phase halide exchanges are predicted to proceed by the σ-attack $S_N2$ path with X = Cl and Br but by the β-$S_N$2'-anti path with X = F. The barriers to the gas-phase halide exchanges increase in the order X = F < Br < Cl, which is the same as that found for the gas-phase identity methyl transfer reactions.

4-Layer Slagging Model을 적용한 300 MW급 Shell형 1단 분류층 석탄 가스화기 전산수치해석 (Numerical Study on the 300 MW Shell-type One-stage Entrained Flow Coal Gasifier Apllied with 4-Layer Slagging Model)

  • 홍정우;정효재;송지훈;황정호
    • 한국연소학회지
    • /
    • 제17권1호
    • /
    • pp.1-11
    • /
    • 2012
  • A slag building simplified model was developed to determine wall heat flux of a Shell 300 MW coal gasifier. In the model 4 layers(particulate, sintered, molten slag, solidified slag) were considered and mass conservation and energy balance were used to obtain each slag layer's thickness and surface temperature. Thermo-chemical and fluid charateristics of the gasifier were studied with and without considering the slag model using commercial CFD code FLUENT. Consideration of the slag layer did not affect syn-gas mole fractions. However, the slag layer caused to increase the exit gas temperature by about 50 K.

합성가스 생성을 위한 글라이딩 아크 플라즈마 개질기에서 프로판 개질 (Propane Reforming in Gliding Arc Plasma Reformer for SynGas Generation)

  • 양윤철;전영남
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.869-875
    • /
    • 2009
  • The purpose of this paper is to investigate the optimal condition of the syngas production by reforming of propane using Gliding arc plasma reformer. The gliding arc plasma reformer in 3 phases has been newly designed and developed with a quick starting and fast response time. It can be applicable to the various types of fuels (Hydrocarbons $C_xH_y$), and it has a high conversion rate of fuels and high production of hydrogen. The parametric screening studies were carried out according to the changes of a steam feed amount i.e., steam/carbon ratio, total gas flow rate and input electric power. The optimum operating conditions were S/C ratio 2.8, total gas flow rate of 14 L/min and input electric power of 2.4 kW. The result of optimum operating conditions showed the 55 % $H_2$, 14 % CO, 15 % $CO_2$, 10 % $C_3H_8$ and 4 % $CH_4$. Also, $C_3H_8$ conversion, $H_2$ yield and $H_2$ selectivity were 90 %, 42 %, 15 %, respectively. The energy efficiency and specific energy requirements were 37 % and 334 kJ/mol respectively.

유동상 반응로 조건에서 목재와 RDF 부분 산화의 영향 (Effect of Partial Oxidation of Wood and RDF in a Fluidized Bed)

  • 김태현;최상민
    • 한국연소학회지
    • /
    • 제13권2호
    • /
    • pp.23-32
    • /
    • 2008
  • Gasification characteristics in the fluidized bed reactor are essential for the design of a gasification furnace to optimize the operation condition. Moisture content of the solid fuel is one of the important factors to influence directly the gasification characteristics. So it is necessary to investigate the effect of moisture content of solid fuel in partial oxidation condition. Gasification characteristics are investigated with results from thermogravimetric analyzer and lab-scale fluidized bed reactor for wood and RDF samples along with changing moisture contents. Additionally lab-scale fluidized bed reactor was run continuously and gas concentrations at the exit were measured. It is observed that the rate of reaction in partial oxidation condition is between the results from the combustion environment and from the inert condition. Moisture content in a particle slows down the heating rate of a particle. So, reaction is delayed by the moisture content. However, RDF samples those are easy to break-up don't show the effect of moisture content. The result of continuous operation condition shows that proper moisture content promotes gasification because steam from the particles helps gasification of the solid fuel. A simulation to predict the syn-gas composition was conducted by the Aspen Plus process simulator. The cold gas efficiency of the experiment was compared with results from the simulation.

  • PDF

Pilot 규모 석탄 가스화기에서의 탄종별 가스화성능 특성 (Effects of Different Coal Type on Gasification Characteristics)

  • 박세익;이중원;서혜경
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.470-477
    • /
    • 2010
  • The IGCC (Integrated gasification combined cycle) is known for one of the highest efficiency and the lowest emitting coal fueled power generating technologies. As the core technology of this system is the gasifier to make the efficiency and the continuous operation time increase, the research about different coal's gasification has been conducted. Our research group had set-up the coal gasifier for the pilot test to study the effect of different coals-Shenhua and Adaro coal- on gasification characteristics. Gasification conditions like temperature and pressure were controlled at a fixed condition and coal feed rate was also controlled 30 kg/h to retain the constant experimental condition. Through this study we found effects of coal composition and $O_2$/coal ratio on the cold gas efficiency, carbon conversion rate. The compounds of coal like carbon and ash make the performance of gasifier change. And carbon conversion rate was decreased with reduced $O_2$/coal ratio. The optical $O_2$/coal ratio is 0.8 for the highest cold gas efficiency approximately. At those operating conditions, the higher coal has the C/H ratio, the lower syn-gas has the $H_2$/CO ratio.

Poly(vinyl chloride) 유도체로부터 제조된 바이오센서용 고분자막의 기체 투과특성 (Gas Permeation Properties of Polymeric Membranes for Biosensor Prepared from Poly(vinyl chloride) Derivatives)

  • 임춘원;김완영;이연식;윤정원;정용섭
    • 공업화학
    • /
    • 제10권3호
    • /
    • pp.362-366
    • /
    • 1999
  • Poly(vinyl chloride) (PYC) 유도제들로부터 용매증발법을 이용하여 바이오센서용 막을 제조하고 기체 투과특성을 조사하였다. 진공하에서 용매를 증발시켜서 제조된 막보다 공기 중에서 서서히 증발시켜 제조된 막의 투과도 계수가 더 높은 것으로 나타났다. PVC 유도체 막들에 대한 $CO_2$$O_2$의 투과도 계수는 공급부의 압력이 증가함에 따라 감소하였다. Carboxylated poly(vinyl chloride) (CPVC) 에 대한 dioctyl phthalate (DOP)의 첨가량이 증가함에 따라 투과도 계수는 증가하였다. 예를 들면 DOP 30 wt. %를 첨가하였을 때, $CO_2$$O_2$의 투과도 계수는 100 psig에서 각각 2.03, 0.96 Barrer 이었으며, DOP를 첨가하지 않았을 때 보다 약 4~5배 증가하였다. Poly(vinyl chloride-co-vinyl acetate) (PVCA)를 가수분해함으로써 OH기가 도입된 poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohoI) (Syn-PVCAcAl)에 DOP를 첨가하였을 때 $CO_2$의 투과도 계수에서 시판제품 PVCAcAl보다 비교적 높은 값을 나타내었으나, $O_2$의 투과도 계수에는 차이가 없었다.

  • PDF